March  2020, 19(3): 1463-1483. doi: 10.3934/cpaa.2020074

Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces

School of Mathematics and Statistics, The University of New South Wales, UNSW SYDNEY, Sydney, NSW 2052, Australia

Received  May 2019 Revised  July 2019 Published  November 2019

We consider a spectral problem for an elliptic differential operator debined on $ \mathbb{R}^n $ and acting on the generalized Sobolev space $ W^{0, \chi}_p(\mathbb{R}^n) $ for $ 1 < p < \infty $. We note that similar problems, but with $ \mathbb{R}^n $ replaced by either a bounded region in $ \mathbb{R}^n $ or by a closed manifold have been the subject of investigation by various authors. Then in this paper we establish, under the assumption of parameter-ellipticity, results pertaining to the existence and uniqueness of solutions of the spectral problem. Furthrermore, by utilizing the aforementioned results, we obain results pertaining to the spectral properties of the Banach space operator induced by the spectral problem.

Citation: Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074
References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.  Google Scholar

[2]

S. Agmon, The Lp approach to the Dirichlet problem. 1. regularity theorems, Ann. Scuola Norm. Sup. Pisa  Google Scholar

[3]

M. S. Agranovich, R. Denk and M. Faierman, Weakly smooth nonselfadjoint elliptic boundary problems, in Advances in Partial Differential Equations: Specral Theory, Microlocal Analysis Singular Manifolds  Google Scholar

[4]

M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, Russ. Math. Surv., 19 (1964), 53–157.  Google Scholar

[5]

A. Anop and T. Kasirenko, Elliptic boundary-value problems in Hörmander spaces, meth. Funct. Anal. Topol, 22 (2016), 295–310.  Google Scholar

[6]

H. O. Cordes, On compactness of commutators of multiplication and convolutions, and boundedness of pseudo differential operators, J. Funct. Anal., 18 (1975), 115-131.  doi: 10.1016/0022-1236(75)90020-8.  Google Scholar

[7]

H. O. Cordes, Elliptic Pseudodifferential Operators- an Abstact Theory, Lect. Notes in Maths., 756, Springer, Berlin, 1979.  Google Scholar

[8]

H. O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Math. Soc., Lecture Notes Series, 76, Camebridge Univ. Press, Cambridge, 1987. doi: 10.1017/CBO9780511662836.  Google Scholar

[9]

M. Faierman, Fredholm theory connected with a Douglis-Nirenberg system of differential equations over $\mathbf{R}^n$, Meth. Funct. Anal. Topol., 22 (2016), 330–345.  Google Scholar

[10]

G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-0769-6.  Google Scholar

[11]

G. Grubb and N. J. Kokholm, A global calculus of paramater dependant pseududifferential boundary problems, in Lp Sobolev spaces, Acta. Math., 171 (1993), 1–100. doi: 10.1007/BF02392532.  Google Scholar

[12]

L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.  Google Scholar

[13]

R. Illner, On algebras of pseudo differential operators in $L_p(\mathbb{R}^n)$, Comm. Partial Differ. Equ., 2 (1977), 359–393. doi: 10.1080/03605307708820034.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin, 1995.  Google Scholar

[15]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, I, Springer, Berlin, 1972.  Google Scholar

[16]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence, R.I, 1988.  Google Scholar

[17]

V. A. Mikhailets and A. A. Murach, Elliptic operators in a refined scale of function spaces, Ukr. Math. J., 57, (2005), 817–825. doi: 10.1007/s11253-005-0231-6.  Google Scholar

[18]

V. A. Mikhailets and A. A. Murach, Elliptic systems of pseudodifferential equations in a refined scale on a closed manifold, Bull. Pol. Acad. Sci. Math., 56 (2008), 213-224.  doi: 10.4064/ba56-3-4.  Google Scholar

[19]

V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin, 2014. doi: 10.1515/9783110296891.  Google Scholar

[20]

P. Rabier, Fredholm and regularity theory of Douglis-Nirenberg elliptic systems on $\mathbb{R}^n$, Math. Z., 270 (2012), 369–313. doi: 10.1007/s00209-010-0802-6.  Google Scholar

[21]

C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960.  Google Scholar

[22]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Berlin, Springer, 2001. doi: 10.1007/978-3-642-56579-3.  Google Scholar

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[24]

L. R. Volevich and B. P. Paneyakh, Certain spaces of generalized functions and embedding theorems, Russ. Math. Surv., 20 (1965), 1-73.   Google Scholar

[25]

V. Volpert, Elliptic Partial Differential Equations, Vol.1, Birkhäuser, Basel, 2011. doi: 10.1007/978-3-0348-0813-2.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.  Google Scholar

[2]

S. Agmon, The Lp approach to the Dirichlet problem. 1. regularity theorems, Ann. Scuola Norm. Sup. Pisa  Google Scholar

[3]

M. S. Agranovich, R. Denk and M. Faierman, Weakly smooth nonselfadjoint elliptic boundary problems, in Advances in Partial Differential Equations: Specral Theory, Microlocal Analysis Singular Manifolds  Google Scholar

[4]

M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, Russ. Math. Surv., 19 (1964), 53–157.  Google Scholar

[5]

A. Anop and T. Kasirenko, Elliptic boundary-value problems in Hörmander spaces, meth. Funct. Anal. Topol, 22 (2016), 295–310.  Google Scholar

[6]

H. O. Cordes, On compactness of commutators of multiplication and convolutions, and boundedness of pseudo differential operators, J. Funct. Anal., 18 (1975), 115-131.  doi: 10.1016/0022-1236(75)90020-8.  Google Scholar

[7]

H. O. Cordes, Elliptic Pseudodifferential Operators- an Abstact Theory, Lect. Notes in Maths., 756, Springer, Berlin, 1979.  Google Scholar

[8]

H. O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Math. Soc., Lecture Notes Series, 76, Camebridge Univ. Press, Cambridge, 1987. doi: 10.1017/CBO9780511662836.  Google Scholar

[9]

M. Faierman, Fredholm theory connected with a Douglis-Nirenberg system of differential equations over $\mathbf{R}^n$, Meth. Funct. Anal. Topol., 22 (2016), 330–345.  Google Scholar

[10]

G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-0769-6.  Google Scholar

[11]

G. Grubb and N. J. Kokholm, A global calculus of paramater dependant pseududifferential boundary problems, in Lp Sobolev spaces, Acta. Math., 171 (1993), 1–100. doi: 10.1007/BF02392532.  Google Scholar

[12]

L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.  Google Scholar

[13]

R. Illner, On algebras of pseudo differential operators in $L_p(\mathbb{R}^n)$, Comm. Partial Differ. Equ., 2 (1977), 359–393. doi: 10.1080/03605307708820034.  Google Scholar

[14]

T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin, 1995.  Google Scholar

[15]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, I, Springer, Berlin, 1972.  Google Scholar

[16]

A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence, R.I, 1988.  Google Scholar

[17]

V. A. Mikhailets and A. A. Murach, Elliptic operators in a refined scale of function spaces, Ukr. Math. J., 57, (2005), 817–825. doi: 10.1007/s11253-005-0231-6.  Google Scholar

[18]

V. A. Mikhailets and A. A. Murach, Elliptic systems of pseudodifferential equations in a refined scale on a closed manifold, Bull. Pol. Acad. Sci. Math., 56 (2008), 213-224.  doi: 10.4064/ba56-3-4.  Google Scholar

[19]

V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin, 2014. doi: 10.1515/9783110296891.  Google Scholar

[20]

P. Rabier, Fredholm and regularity theory of Douglis-Nirenberg elliptic systems on $\mathbb{R}^n$, Math. Z., 270 (2012), 369–313. doi: 10.1007/s00209-010-0802-6.  Google Scholar

[21]

C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960.  Google Scholar

[22]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Berlin, Springer, 2001. doi: 10.1007/978-3-642-56579-3.  Google Scholar

[23]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[24]

L. R. Volevich and B. P. Paneyakh, Certain spaces of generalized functions and embedding theorems, Russ. Math. Surv., 20 (1965), 1-73.   Google Scholar

[25]

V. Volpert, Elliptic Partial Differential Equations, Vol.1, Birkhäuser, Basel, 2011. doi: 10.1007/978-3-0348-0813-2.  Google Scholar

[1]

Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248

[2]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[3]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[4]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[5]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[6]

Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652-661. doi: 10.3934/proc.2005.2005.652

[7]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[8]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[9]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

[10]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[11]

Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203

[12]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[13]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[14]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[15]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019034

[16]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[17]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[18]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[19]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[20]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]