• Previous Article
    Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations
  • CPAA Home
  • This Issue
  • Next Article
    Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces
March  2020, 19(3): 1485-1507. doi: 10.3934/cpaa.2020075

On $ L^p $ estimates for a simplified Ericksen-Leslie system

1. 

School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China

2. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

3. 

School of Mathematics, South China University of Technology, Guangzhou 510641, China

* Corresponding author

Received  May 2019 Revised  August 2019 Published  November 2019

Fund Project: J.R. Huang is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971357, 11871005, 11771155 and 11571117), and by the Natural Science Foundation of Guangdong Province (Grant No. 2019A1515011491). W.J. Wang is partially supported by the National Natural Science Foundation of China (Grant No. 11871341). H.Y. Wen is partially supported by the National Natural Science Foundation of China (Grant Nos. 11671150, 11722104), and by GDUPS (2016).

In this paper, we study Cauchy problem for a simplified Ericksen-Leslie system in three dimensions. With the initial data of small perturbation near a steady state in $ H^2 $ norm, we obtain the global well-posedness of strong solutions as well as the $ L^p(p\in[1, 6]) $ estimates. In addition, sharper decay rates for the density and the momentum are obtained.

Citation: Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075
References:
[1] R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.   Google Scholar
[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[4]

S. J. DingJ. R. Huang and J. Y. Lin, Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions, Sci. China Math., 56 (2013), 2233-2250.  doi: 10.1007/s11425-013-4620-2.  Google Scholar

[5]

S. J. DingJ. R. HuangH. Y. Wen and R. Z. Zi, Incompressible limit of the compressible hydrodynamic flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[6]

S. J. DingJ. R. Huang and F. G. Xia, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension, J. Differential Equations, 255 (2013), 3848-3879.  doi: 10.1016/j.jde.2013.07.039.  Google Scholar

[7]

S. J. DingJ. Y. LinC. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[8]

S. J. DingC. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst.-Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[9]

R. J. DuanH. X. LiuS. J. Ukai and T. Yang, Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar

[10]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.  doi: 10.1122/1.548883.  Google Scholar

[11]

J. C. GaoQ. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.  doi: 10.1016/j.jde.2016.04.033.  Google Scholar

[12]

B. L. GuoX. Y. Xi and B. Q. Xie, Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J. Differential Equations, 262 (2017), 1413-1460.  doi: 10.1016/j.jde.2016.10.015.  Google Scholar

[13]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indian Univ. Math. Journal, 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[14]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar

[15]

X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.  doi: 10.1137/120898814.  Google Scholar

[16]

J. R. Huang and S. J. Ding, Compressible hydrodynamic flow of nematic liquid crystals with vacuum, J. Differential Equations, 258 (2015), 1653-1684.  doi: 10.1016/j.jde.2014.11.008.  Google Scholar

[17]

J. R. HuangF. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[18]

T. HuangC. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[19]

T. HuangC. Y. Wang and H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[20]

F. JiangS. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[21]

S. Kawashima, Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Ph.D Thesis, Kyoto University, 1983. Google Scholar

[22]

S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106A (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[23]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbb{R}^3$, J. Differential Equations, 184 (2002), 587-619.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[24]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[25]

J. LiZ. H. Xu and J. W. Zhang, Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 2105-2145.  doi: 10.1007/s00021-018-0400-7.  Google Scholar

[26]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[27]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[28]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[29]

F. H. LinJ. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

J. Y. LinB. S. Lai and C. Y. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[31]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Commun. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar

[32]

X. G. Liu and J. Qing, Existence of globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.  doi: 10.3934/dcds.2013.33.757.  Google Scholar

[33]

D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Rational Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[34]

H. M. Xu, The Pointwise Estimate of Navier-Stokes Equations in Even Multi Space-dimension, Ph.D Thesis, Wuhan University, 2000. Google Scholar

[35]

H. M. Xu and W. K. Wang, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even space-dimensions, Acta. Math. Sci., 21B (2001), 417-427.  doi: 10.1016/S0252-9602(17)30429-0.  Google Scholar

show all references

References:
[1] R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.   Google Scholar
[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[4]

S. J. DingJ. R. Huang and J. Y. Lin, Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions, Sci. China Math., 56 (2013), 2233-2250.  doi: 10.1007/s11425-013-4620-2.  Google Scholar

[5]

S. J. DingJ. R. HuangH. Y. Wen and R. Z. Zi, Incompressible limit of the compressible hydrodynamic flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[6]

S. J. DingJ. R. Huang and F. G. Xia, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension, J. Differential Equations, 255 (2013), 3848-3879.  doi: 10.1016/j.jde.2013.07.039.  Google Scholar

[7]

S. J. DingJ. Y. LinC. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[8]

S. J. DingC. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst.-Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[9]

R. J. DuanH. X. LiuS. J. Ukai and T. Yang, Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar

[10]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.  doi: 10.1122/1.548883.  Google Scholar

[11]

J. C. GaoQ. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.  doi: 10.1016/j.jde.2016.04.033.  Google Scholar

[12]

B. L. GuoX. Y. Xi and B. Q. Xie, Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J. Differential Equations, 262 (2017), 1413-1460.  doi: 10.1016/j.jde.2016.10.015.  Google Scholar

[13]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indian Univ. Math. Journal, 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[14]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar

[15]

X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.  doi: 10.1137/120898814.  Google Scholar

[16]

J. R. Huang and S. J. Ding, Compressible hydrodynamic flow of nematic liquid crystals with vacuum, J. Differential Equations, 258 (2015), 1653-1684.  doi: 10.1016/j.jde.2014.11.008.  Google Scholar

[17]

J. R. HuangF. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[18]

T. HuangC. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[19]

T. HuangC. Y. Wang and H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[20]

F. JiangS. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[21]

S. Kawashima, Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Ph.D Thesis, Kyoto University, 1983. Google Scholar

[22]

S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106A (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[23]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbb{R}^3$, J. Differential Equations, 184 (2002), 587-619.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[24]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[25]

J. LiZ. H. Xu and J. W. Zhang, Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 2105-2145.  doi: 10.1007/s00021-018-0400-7.  Google Scholar

[26]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[27]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[28]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[29]

F. H. LinJ. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

J. Y. LinB. S. Lai and C. Y. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[31]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Commun. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar

[32]

X. G. Liu and J. Qing, Existence of globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.  doi: 10.3934/dcds.2013.33.757.  Google Scholar

[33]

D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Rational Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[34]

H. M. Xu, The Pointwise Estimate of Navier-Stokes Equations in Even Multi Space-dimension, Ph.D Thesis, Wuhan University, 2000. Google Scholar

[35]

H. M. Xu and W. K. Wang, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even space-dimensions, Acta. Math. Sci., 21B (2001), 417-427.  doi: 10.1016/S0252-9602(17)30429-0.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[3]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[4]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[7]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[10]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[13]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[14]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[15]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[18]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[19]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[20]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (116)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]