• Previous Article
    Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations
  • CPAA Home
  • This Issue
  • Next Article
    Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces
March  2020, 19(3): 1485-1507. doi: 10.3934/cpaa.2020075

On $ L^p $ estimates for a simplified Ericksen-Leslie system

1. 

School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China

2. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

3. 

School of Mathematics, South China University of Technology, Guangzhou 510641, China

* Corresponding author

Received  May 2019 Revised  August 2019 Published  November 2019

Fund Project: J.R. Huang is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971357, 11871005, 11771155 and 11571117), and by the Natural Science Foundation of Guangdong Province (Grant No. 2019A1515011491). W.J. Wang is partially supported by the National Natural Science Foundation of China (Grant No. 11871341). H.Y. Wen is partially supported by the National Natural Science Foundation of China (Grant Nos. 11671150, 11722104), and by GDUPS (2016)

In this paper, we study Cauchy problem for a simplified Ericksen-Leslie system in three dimensions. With the initial data of small perturbation near a steady state in $ H^2 $ norm, we obtain the global well-posedness of strong solutions as well as the $ L^p(p\in[1, 6]) $ estimates. In addition, sharper decay rates for the density and the momentum are obtained.

Citation: Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075
References:
[1] R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.   Google Scholar
[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[4]

S. J. DingJ. R. Huang and J. Y. Lin, Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions, Sci. China Math., 56 (2013), 2233-2250.  doi: 10.1007/s11425-013-4620-2.  Google Scholar

[5]

S. J. DingJ. R. HuangH. Y. Wen and R. Z. Zi, Incompressible limit of the compressible hydrodynamic flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[6]

S. J. DingJ. R. Huang and F. G. Xia, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension, J. Differential Equations, 255 (2013), 3848-3879.  doi: 10.1016/j.jde.2013.07.039.  Google Scholar

[7]

S. J. DingJ. Y. LinC. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[8]

S. J. DingC. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst.-Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[9]

R. J. DuanH. X. LiuS. J. Ukai and T. Yang, Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar

[10]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.  doi: 10.1122/1.548883.  Google Scholar

[11]

J. C. GaoQ. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.  doi: 10.1016/j.jde.2016.04.033.  Google Scholar

[12]

B. L. GuoX. Y. Xi and B. Q. Xie, Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J. Differential Equations, 262 (2017), 1413-1460.  doi: 10.1016/j.jde.2016.10.015.  Google Scholar

[13]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indian Univ. Math. Journal, 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[14]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar

[15]

X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.  doi: 10.1137/120898814.  Google Scholar

[16]

J. R. Huang and S. J. Ding, Compressible hydrodynamic flow of nematic liquid crystals with vacuum, J. Differential Equations, 258 (2015), 1653-1684.  doi: 10.1016/j.jde.2014.11.008.  Google Scholar

[17]

J. R. HuangF. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[18]

T. HuangC. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[19]

T. HuangC. Y. Wang and H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[20]

F. JiangS. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[21]

S. Kawashima, Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Ph.D Thesis, Kyoto University, 1983. Google Scholar

[22]

S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106A (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[23]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbb{R}^3$, J. Differential Equations, 184 (2002), 587-619.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[24]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[25]

J. LiZ. H. Xu and J. W. Zhang, Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 2105-2145.  doi: 10.1007/s00021-018-0400-7.  Google Scholar

[26]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[27]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[28]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[29]

F. H. LinJ. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

J. Y. LinB. S. Lai and C. Y. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[31]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Commun. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar

[32]

X. G. Liu and J. Qing, Existence of globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.  doi: 10.3934/dcds.2013.33.757.  Google Scholar

[33]

D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Rational Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[34]

H. M. Xu, The Pointwise Estimate of Navier-Stokes Equations in Even Multi Space-dimension, Ph.D Thesis, Wuhan University, 2000. Google Scholar

[35]

H. M. Xu and W. K. Wang, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even space-dimensions, Acta. Math. Sci., 21B (2001), 417-427.  doi: 10.1016/S0252-9602(17)30429-0.  Google Scholar

show all references

References:
[1] R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.   Google Scholar
[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

Y. S. ChenS. J. Ding and W. J. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst., 36 (2016), 5287-5307.  doi: 10.3934/dcds.2016032.  Google Scholar

[4]

S. J. DingJ. R. Huang and J. Y. Lin, Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions, Sci. China Math., 56 (2013), 2233-2250.  doi: 10.1007/s11425-013-4620-2.  Google Scholar

[5]

S. J. DingJ. R. HuangH. Y. Wen and R. Z. Zi, Incompressible limit of the compressible hydrodynamic flow, J. Funct. Anal., 264 (2013), 1711-1756.  doi: 10.1016/j.jfa.2013.01.011.  Google Scholar

[6]

S. J. DingJ. R. Huang and F. G. Xia, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension, J. Differential Equations, 255 (2013), 3848-3879.  doi: 10.1016/j.jde.2013.07.039.  Google Scholar

[7]

S. J. DingJ. Y. LinC. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[8]

S. J. DingC. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst.-Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[9]

R. J. DuanH. X. LiuS. J. Ukai and T. Yang, Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar

[10]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22-34.  doi: 10.1122/1.548883.  Google Scholar

[11]

J. C. GaoQ. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.  doi: 10.1016/j.jde.2016.04.033.  Google Scholar

[12]

B. L. GuoX. Y. Xi and B. Q. Xie, Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J. Differential Equations, 262 (2017), 1413-1460.  doi: 10.1016/j.jde.2016.10.015.  Google Scholar

[13]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indian Univ. Math. Journal, 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[14]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar

[15]

X. P. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678-2699.  doi: 10.1137/120898814.  Google Scholar

[16]

J. R. Huang and S. J. Ding, Compressible hydrodynamic flow of nematic liquid crystals with vacuum, J. Differential Equations, 258 (2015), 1653-1684.  doi: 10.1016/j.jde.2014.11.008.  Google Scholar

[17]

J. R. HuangF. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.  doi: 10.1007/s00220-014-2079-9.  Google Scholar

[18]

T. HuangC. Y. Wang and H. Y. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[19]

T. HuangC. Y. Wang and H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[20]

F. JiangS. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.  Google Scholar

[21]

S. Kawashima, Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Ph.D Thesis, Kyoto University, 1983. Google Scholar

[22]

S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh, 106A (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[23]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbb{R}^3$, J. Differential Equations, 184 (2002), 587-619.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[24]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.  Google Scholar

[25]

J. LiZ. H. Xu and J. W. Zhang, Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 2105-2145.  doi: 10.1007/s00021-018-0400-7.  Google Scholar

[26]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.  Google Scholar

[27]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.  Google Scholar

[28]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[29]

F. H. LinJ. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

J. Y. LinB. S. Lai and C. Y. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.  Google Scholar

[31]

T. P. Liu and W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Commun. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar

[32]

X. G. Liu and J. Qing, Existence of globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.  doi: 10.3934/dcds.2013.33.757.  Google Scholar

[33]

D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Rational Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[34]

H. M. Xu, The Pointwise Estimate of Navier-Stokes Equations in Even Multi Space-dimension, Ph.D Thesis, Wuhan University, 2000. Google Scholar

[35]

H. M. Xu and W. K. Wang, Pointwise estimate of solutions of isentropic Navier-Stokes equations in even space-dimensions, Acta. Math. Sci., 21B (2001), 417-427.  doi: 10.1016/S0252-9602(17)30429-0.  Google Scholar

[1]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[2]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[3]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[4]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[5]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[6]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[7]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[8]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[9]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[10]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[11]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[12]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[13]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[14]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[15]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[16]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[17]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[18]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[19]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[20]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (23)
  • Cited by (0)

Other articles
by authors

[Back to Top]