March  2020, 19(3): 1509-1535. doi: 10.3934/cpaa.2020076

Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations

1. 

Department of Mathematics and Computer Science, University of Dschang, P. O. BOX 67, Dschang, Cameroon

2. 

Department of Mathematics and Statistics, Florida International University, MMC, Miami, FL 33199, USA

3. 

School of Computational and Applied Mathematics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa

* Corresponding author

Received  May 2019 Revised  August 2019 Published  November 2019

Fund Project: The first author is supported by the Fulbright Scholar Program Advanced Research and the Florida International University, 2019.

In this paper, we provide a detailed investigation of the problem of existence and uniqueness of strong solutions of a three-dimensional system of globally modified magnetohydrodynamic equations which describe the motion of turbulent particles of fluids in a magnetic field. We use the flattening property to establish the existence of the global $ V $-attractor and a limit argument to obtain the existence of bounded entire weak solutions of the three-dimensional magnetohydrodynamic equations with time independent forcing.

Citation: G. Deugoué, J. K. Djoko, A. C. Fouape, A. Ndongmo Ngana. Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1509-1535. doi: 10.3934/cpaa.2020076
References:
[1]

D. Biskamp, Nonlinear Magnetohydrodynamics, in Cambridge Monographs on Plasma Physics, 1, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511599965.  Google Scholar

[2]

T. G. Cowling, Magnetohydrodynamics, in Interscience Tracts on Physics and Astronomy, 4, Interscience Publishers, Inc., New York, 1957, Interscience Publishers, Ltd., London.  Google Scholar

[3]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, in The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961.  Google Scholar

[4]

T. CaraballoJ. Real and P. E. Kloeden, Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436.  doi: 10.1515/ans-2006-0304.  Google Scholar

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser., A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[6]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Continuous Dyn. Syst. Ser-B, 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[7]

T. CaraballoJ. Real and A. M. Márquez, Three-dimensional system of globally modified Navier-Stokes equations with delay, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 20 (2010), 2869-2883.  doi: 10.1142/S0218127410027428.  Google Scholar

[8]

T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, In Recent Trends in Dynamical Systems, Proceedings of a Conference in Honor of Jürgen Scheurle (A. Johann, H. P. Kruse, F. Rupp eds.), pp. 473–492, Springer Proceedings in Mathematics and Statistics, 35 (2013). doi: 10.1007/978-3-0348-0451-6_18.  Google Scholar

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[10]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified three-dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029.  doi: 10.1016/j.cam.2010.10.003.  Google Scholar

[11]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics (Transl. from the French by C. W. John), in, Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin, New York, 1976.  Google Scholar

[12]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[13]

P. E. KloedenJ. A. Langa and J. Real, Pullback $V$-attractors of the three-dimensional globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 6 (2007), 937-955.  doi: 10.3934/cpaa.2007.6.937.  Google Scholar

[14]

P. E. KloedenP. Marn-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[15]

P. E. Kloeden and J. Valero, The weak connectnedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys Engs. Sci., 463 (2007), 1491-1508.  doi: 10.1098/rspa.2007.1831.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, 1969.  Google Scholar

[17]

O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, in, Mathematics and its Applucations, 2, Gordon and Breach, Science Publishers, New York, Lndon, Paris, 1969.  Google Scholar

[18]

A. M. Márquez, Existence and uniqueness of solutions, and pullback attractor for a system of globally modified 3D-Navier-Stokes equations with finite delay, SeMA J., 51 (2010), 117-124.  doi: 10.1007/bf03322562.  Google Scholar

[19]

P. Marín-RubioJ. Real and A. M. Márquez-Durán, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.  doi: 10.1515/ans-2011-0409.  Google Scholar

[20]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[21]

M. Romito, The uniqueness of weak solutions of the Globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427.  doi: 10.1515/ans-2009-0209.  Google Scholar

[22]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[23]

Shih.-I. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, Vienna, 1962, Prentice-Hall, Inc., Englewood Cliffs, NJ.  Google Scholar

[24]

T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model, Applicable Analysis, 96 (2017). doi: 10.1080/00036811.2016.1236924.  Google Scholar

[25]

T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three-dimensional globally modified two-phase flow model, Annali di Mathematica, 197 (2018), 843-868.  doi: 10.1007/s10231-017-0706-8.  Google Scholar

[26]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, in, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.  Google Scholar

[27]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[28]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., 68, Applied mathematics at science: Springer-Verlag, New York; 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[29]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, AMS-Chelsea Series. AMS, Providence 2001. doi: 10.1090/chel/343.  Google Scholar

[30]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk., 209 (1979), 135–210.  Google Scholar

[31]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for 27 the 3D globally modified Navier-Stokes equations, J. Diff. Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.  Google Scholar

show all references

References:
[1]

D. Biskamp, Nonlinear Magnetohydrodynamics, in Cambridge Monographs on Plasma Physics, 1, Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511599965.  Google Scholar

[2]

T. G. Cowling, Magnetohydrodynamics, in Interscience Tracts on Physics and Astronomy, 4, Interscience Publishers, Inc., New York, 1957, Interscience Publishers, Ltd., London.  Google Scholar

[3]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, in The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961.  Google Scholar

[4]

T. CaraballoJ. Real and P. E. Kloeden, Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436.  doi: 10.1515/ans-2006-0304.  Google Scholar

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser., A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[6]

T. CaraballoP. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Continuous Dyn. Syst. Ser-B, 10 (2008), 761-781.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[7]

T. CaraballoJ. Real and A. M. Márquez, Three-dimensional system of globally modified Navier-Stokes equations with delay, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 20 (2010), 2869-2883.  doi: 10.1142/S0218127410027428.  Google Scholar

[8]

T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, In Recent Trends in Dynamical Systems, Proceedings of a Conference in Honor of Jürgen Scheurle (A. Johann, H. P. Kruse, F. Rupp eds.), pp. 473–492, Springer Proceedings in Mathematics and Statistics, 35 (2013). doi: 10.1007/978-3-0348-0451-6_18.  Google Scholar

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[10]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified three-dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029.  doi: 10.1016/j.cam.2010.10.003.  Google Scholar

[11]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics (Transl. from the French by C. W. John), in, Grundlehren der Mathematischen Wissenschaften, 219, Springer-Verlag, Berlin, New York, 1976.  Google Scholar

[12]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[13]

P. E. KloedenJ. A. Langa and J. Real, Pullback $V$-attractors of the three-dimensional globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 6 (2007), 937-955.  doi: 10.3934/cpaa.2007.6.937.  Google Scholar

[14]

P. E. KloedenP. Marn-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[15]

P. E. Kloeden and J. Valero, The weak connectnedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys Engs. Sci., 463 (2007), 1491-1508.  doi: 10.1098/rspa.2007.1831.  Google Scholar

[16]

J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, 1969.  Google Scholar

[17]

O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, in, Mathematics and its Applucations, 2, Gordon and Breach, Science Publishers, New York, Lndon, Paris, 1969.  Google Scholar

[18]

A. M. Márquez, Existence and uniqueness of solutions, and pullback attractor for a system of globally modified 3D-Navier-Stokes equations with finite delay, SeMA J., 51 (2010), 117-124.  doi: 10.1007/bf03322562.  Google Scholar

[19]

P. Marín-RubioJ. Real and A. M. Márquez-Durán, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.  doi: 10.1515/ans-2011-0409.  Google Scholar

[20]

Q. MaS. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[21]

M. Romito, The uniqueness of weak solutions of the Globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427.  doi: 10.1515/ans-2009-0209.  Google Scholar

[22]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[23]

Shih.-I. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag, Vienna, 1962, Prentice-Hall, Inc., Englewood Cliffs, NJ.  Google Scholar

[24]

T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model, Applicable Analysis, 96 (2017). doi: 10.1080/00036811.2016.1236924.  Google Scholar

[25]

T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three-dimensional globally modified two-phase flow model, Annali di Mathematica, 197 (2018), 843-868.  doi: 10.1007/s10231-017-0706-8.  Google Scholar

[26]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, in, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.  Google Scholar

[27]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[28]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., 68, Applied mathematics at science: Springer-Verlag, New York; 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[29]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, AMS-Chelsea Series. AMS, Providence 2001. doi: 10.1090/chel/343.  Google Scholar

[30]

M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk., 209 (1979), 135–210.  Google Scholar

[31]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for 27 the 3D globally modified Navier-Stokes equations, J. Diff. Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.  Google Scholar

[1]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[2]

Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763

[3]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[4]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[5]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[6]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[7]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[8]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[9]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[10]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[11]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[12]

Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[13]

Elder Jesús Villamizar-Roa, Henry Lamos-Díaz, Gilberto Arenas-Díaz. Very weak solutions for the magnetohydrodynamic type equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 957-972. doi: 10.3934/dcdsb.2008.10.957

[14]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[15]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[16]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[17]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[18]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[19]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[20]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (94)
  • HTML views (60)
  • Cited by (0)

[Back to Top]