-
Previous Article
Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent
- CPAA Home
- This Issue
-
Next Article
Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamic equations
On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $
Dogus University, Acıbadem, Kadiköy, Istanbul, Turkey |
In this paper we investigate the non-self-adjoint operator$ \ H $ generated in $ L_{2}(-\infty, \infty) $ by the Mathieu-Hill equation with a complex-valued potential. We find a necessary and sufficient conditions on the potential for which $ H $ has no spectral singularity at infinity and it is an asymptotically spectral operator. Moreover, we give a detailed classification, stated in term of the potential, for the form of the spectral decomposition of the operator $ H $ by investigating the essential spectral singularities.
References:
[1] |
L. V. Ahlfors, Complex Analysis, McGRAW-HILL, 1979., |
[2] |
P. Djakov and B. S. Mitjagin,
Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Mathematische Annalen, 351 (2011), 509-540.
doi: 10.1007/s00208-010-0612-5. |
[3] |
M. S. P. Eastham, The Spectral Theory of Periodic Differential Operators, New York: Hafner, 1974. |
[4] |
M. G. Gasymov,
Spectral analysis of a class of second-order nonself-adjoint differential operators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.
|
[5] |
I. M. Gelfand,
Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.
|
[6] |
F. Gesztesy and V. Tkachenko, A criterion for Hill operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287–353.
doi: 10.1007/s11854-009-0012-5. |
[7] |
N. B. Kerimov, On a Boundary value problem of N. I. Ionkin type, Differential Equations, 49 (2013), 1233–1245.
doi: 10.1134/S0012266113100042. |
[8] |
D. McGarvey, Operators commuting with translations by one. Part Ⅱ. Differential operators with periodic coefficients in $L_{p}(-\infty, \infty)$, J. Math. Anal. Appl., 11 (1965), 564–596.
doi: 10.1016/0022-247X(65)90105-8. |
[9] |
D. McGarvey, Operators commuting with translations by one. Part Ⅲ. Perturbation results for periodic differential operators, J. Math. Anal. Appl., 12 (1965), 187–234.
doi: 10.1016/0022-247X(65)90033-8. |
[10] |
M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967. |
[11] |
A. A. Shkalikov and O. A. Veliev, On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville problems, Math. Notes, 85 (2009), 647–660.
doi: 10.1134/S0001434609050058. |
[12] |
O. A. Veliev and M. Toppamuk Duman, The spectral expansion for a non-self-adjoint Hill operators with a locally integrable potential, J. Math. Anal. Appl., 265 (2002), 76–90.
doi: 10.1006/jmaa.2001.7693. |
[13] |
O. A. Veliev, Asymptotic Analysis of Non-self-adjoint Hill Operators, Cent. Eur. J. Math., 11 (2013), 2234–2256.
doi: 10.2478/s11533-013-0305-x. |
[14] |
O. A. Veliev,
On the simplicity of the eigenvalues of the non-self-adjoint Mathieu-Hill operators, Applied and Computational Mathematics, 13 (2014), 122-134.
|
[15] |
O. A. Veliev, Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators, Journal of Mathematical Analysis and Applications, 422 (2015), 1390–1401.
doi: 10.1016/j.jmaa.2014.09.074. |
[16] |
O. A. Veliev, On the spectral singularities and spectrality of the Hill's Operator, Operators and Matrices, 10 (2016), 57–71.
doi: 10.7153/oam-10-05. |
[17] |
O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227–2251.
doi: 10.3934/cpaa.2017110. |
[18] |
O. A. Veliev, Spectral expansion series with parenthesis for the non-self-adjoint periodic differential operators, Communication on Pure and Applied Analysis, 18 (2019), 397–424.
doi: 10.3934/cpaa.2019020. |
show all references
References:
[1] |
L. V. Ahlfors, Complex Analysis, McGRAW-HILL, 1979., |
[2] |
P. Djakov and B. S. Mitjagin,
Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Mathematische Annalen, 351 (2011), 509-540.
doi: 10.1007/s00208-010-0612-5. |
[3] |
M. S. P. Eastham, The Spectral Theory of Periodic Differential Operators, New York: Hafner, 1974. |
[4] |
M. G. Gasymov,
Spectral analysis of a class of second-order nonself-adjoint differential operators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.
|
[5] |
I. M. Gelfand,
Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.
|
[6] |
F. Gesztesy and V. Tkachenko, A criterion for Hill operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287–353.
doi: 10.1007/s11854-009-0012-5. |
[7] |
N. B. Kerimov, On a Boundary value problem of N. I. Ionkin type, Differential Equations, 49 (2013), 1233–1245.
doi: 10.1134/S0012266113100042. |
[8] |
D. McGarvey, Operators commuting with translations by one. Part Ⅱ. Differential operators with periodic coefficients in $L_{p}(-\infty, \infty)$, J. Math. Anal. Appl., 11 (1965), 564–596.
doi: 10.1016/0022-247X(65)90105-8. |
[9] |
D. McGarvey, Operators commuting with translations by one. Part Ⅲ. Perturbation results for periodic differential operators, J. Math. Anal. Appl., 12 (1965), 187–234.
doi: 10.1016/0022-247X(65)90033-8. |
[10] |
M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967. |
[11] |
A. A. Shkalikov and O. A. Veliev, On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm-Liouville problems, Math. Notes, 85 (2009), 647–660.
doi: 10.1134/S0001434609050058. |
[12] |
O. A. Veliev and M. Toppamuk Duman, The spectral expansion for a non-self-adjoint Hill operators with a locally integrable potential, J. Math. Anal. Appl., 265 (2002), 76–90.
doi: 10.1006/jmaa.2001.7693. |
[13] |
O. A. Veliev, Asymptotic Analysis of Non-self-adjoint Hill Operators, Cent. Eur. J. Math., 11 (2013), 2234–2256.
doi: 10.2478/s11533-013-0305-x. |
[14] |
O. A. Veliev,
On the simplicity of the eigenvalues of the non-self-adjoint Mathieu-Hill operators, Applied and Computational Mathematics, 13 (2014), 122-134.
|
[15] |
O. A. Veliev, Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators, Journal of Mathematical Analysis and Applications, 422 (2015), 1390–1401.
doi: 10.1016/j.jmaa.2014.09.074. |
[16] |
O. A. Veliev, On the spectral singularities and spectrality of the Hill's Operator, Operators and Matrices, 10 (2016), 57–71.
doi: 10.7153/oam-10-05. |
[17] |
O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227–2251.
doi: 10.3934/cpaa.2017110. |
[18] |
O. A. Veliev, Spectral expansion series with parenthesis for the non-self-adjoint periodic differential operators, Communication on Pure and Applied Analysis, 18 (2019), 397–424.
doi: 10.3934/cpaa.2019020. |
[1] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[2] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005 |
[3] |
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006 |
[4] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[5] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[6] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[7] |
Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023 |
[8] |
Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054 |
[9] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[10] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026 |
[11] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[12] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[13] |
Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061 |
[14] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[15] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[16] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[17] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 |
[18] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[19] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[20] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]