• Previous Article
    Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary
  • CPAA Home
  • This Issue
  • Next Article
    Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations
April  2020, 19(4): 1875-1890. doi: 10.3934/cpaa.2020082

A mathematical model of chemotherapy with variable infusion

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

*Corresponding author

Dedicated to Prof. Dr. Tomás Caraballo's 60th birthday

Received  June 2019 Revised  September 2019 Published  January 2020

Fund Project: This work was partially supported by Simons Foundation, USA (Collaboration Grants for Mathematicians No. 429717).

A nonautonomous mathematical model of chemotherapy cancer treatment with time-dependent infusion concentration of the chemotherapy agent is developed and studied. In particular, a mutual inhibition type model is adopted to describe the interactions between the chemotherapy agent and cells, in which the chemotherapy agent is modeled as the prey being consumed by both cancer and normal cells, thereby reducing the population of both. Properties of solutions and detailed dynamics of the nonautonomous system are investigated, and conditions under which the treatment is successful or unsuccessful are established. It can be shown both theoretically and numerically that with the same amount of chemotherapy agent infused during the same period of time, a treatment with variable infusion may over perform a treatment with constant infusion.

Citation: Ismail Abdulrashid, Xiaoying Han. A mathematical model of chemotherapy with variable infusion. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1875-1890. doi: 10.3934/cpaa.2020082
References:
[1]

I. Abdulrashid, A. M. A. Abdallah and X. Han, Stability analysis of a chemotherapy model with delays, 2019. Google Scholar

[2]

I. Abdulrashid, T. Caraballo and X. Han, Effects of delays in mathematical models of cancer chemotherapy, preprint. Google Scholar

[3]

P. Boyle and B. Levin, The World Cancer Report, World Health Oganization, 2008. Google Scholar

[4]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6.  Google Scholar

[5]

A. F. ChambersA. C. Groom and I. C. MacDonald, Metastasis: dissemination and growth of cancer cells in metastatic sites, Nature Rev. Cancer, 2 (2002), 563-572.   Google Scholar

[6]

M. Costa and J. Boldrini, Chemotherapeutic treatments: A study of the interplay among drugs resistance, toxicity and recuperation from side effects, Bull. Math. Biol., 59 (1997), 205-232.   Google Scholar

[7]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Disc. Cont, Dyn, Sys.- S, to appear. doi: 10.3934/dcdss.2020065.  Google Scholar

[8]

L. de PillisW. Gu and A. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretaions, J. Theoret. Bio., 238 (2006), 841-862.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[9]

L. de PillisA. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958.   Google Scholar

[10]

R. Dorr and D. Von Hoff, Cancer chemotherapy Handbook, Appleton and Lange, Connecticut, 1994. Google Scholar

[11]

M. Eisen, Mathematical models in cell biology and cancer chemotherapy, in Lect. Notes Biomath., vol. 30  Google Scholar

[12]

J. K. Hale, Ordinary Differential Equations, Dover Publication, Mineola, NY, 1980. Google Scholar

[13]

X. Han, Dynamical analysis of chemotherapy model with time-dependent infusion, Nonlinear Analysis: RWA, 34 (2017), 459-480.  doi: 10.1016/j.nonrwa.2016.09.001.  Google Scholar

[14]

P. E. Kloeden and C. Potzsche, Nonautonomous Dynamical Systems in the Life Sciences, Lecture Note in Math., Springer, New York, 2013. doi: 10.1007/978-3-319-03080-7_1.  Google Scholar

[15]

P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, in Mathematical Surveys and Monographs, Vol. 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[16]

P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumors with discrete delay, Int. J. Dynam. Control, 5 (2017), 872-892.  doi: 10.1007/s40435-015-0221-y.  Google Scholar

[17]

A. LopezJ. Seoane and M. Sanjuan, A validated mathematical model of tumor growth including tumor host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[18]

J. Mackay and G. Mensah, The Atlas of Disease and Stroke, Published by the World Health Organization in Collaboration with the Centers for Disease Control and Prevention, 2004. Google Scholar

[19]

J. Murray, Optimal drug regimens in cancer chemotherapy for single drug that block progression through the cell cycle, Math. Biosci., 123 (1994), 183-213.   Google Scholar

[20]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159-199.  doi: 10.1016/S0025-5564(99)00058-9.  Google Scholar

[21]

J. Panetta and J. Adam, A mathematical model of cycle-specific chemotherapy, Math. Comput. Modeling, 22 (1995), 67-82.   Google Scholar

[22]

S. PinhoH. I. Freedman and F. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comput. Modeling, 36 (2002), 773-803.  doi: 10.1016/S0895-7177(02)00227-3.  Google Scholar

[23]

M. S. Rajput and P. Agrawal, Microspheres in cancer therapy, Indian J. Cancer, 47 (2010), 458-468.   Google Scholar

[24]

E. D. Sontag, Lecture Notes in Mathematical Biology, 2006. Google Scholar

[25]

E. D. Sontag, Lecture Notes on Mathematical Systems Biology, Northeastern University, Boston, 2018. Google Scholar

[26]

T. Wheldon, Mathematical Models in Cancer Research, Adam Hilger, Bristol, 1988. Google Scholar

show all references

References:
[1]

I. Abdulrashid, A. M. A. Abdallah and X. Han, Stability analysis of a chemotherapy model with delays, 2019. Google Scholar

[2]

I. Abdulrashid, T. Caraballo and X. Han, Effects of delays in mathematical models of cancer chemotherapy, preprint. Google Scholar

[3]

P. Boyle and B. Levin, The World Cancer Report, World Health Oganization, 2008. Google Scholar

[4]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer, Cham, 2016. doi: 10.1007/978-3-319-49247-6.  Google Scholar

[5]

A. F. ChambersA. C. Groom and I. C. MacDonald, Metastasis: dissemination and growth of cancer cells in metastatic sites, Nature Rev. Cancer, 2 (2002), 563-572.   Google Scholar

[6]

M. Costa and J. Boldrini, Chemotherapeutic treatments: A study of the interplay among drugs resistance, toxicity and recuperation from side effects, Bull. Math. Biol., 59 (1997), 205-232.   Google Scholar

[7]

H. Cui, P. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Disc. Cont, Dyn, Sys.- S, to appear. doi: 10.3934/dcdss.2020065.  Google Scholar

[8]

L. de PillisW. Gu and A. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretaions, J. Theoret. Bio., 238 (2006), 841-862.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[9]

L. de PillisA. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958.   Google Scholar

[10]

R. Dorr and D. Von Hoff, Cancer chemotherapy Handbook, Appleton and Lange, Connecticut, 1994. Google Scholar

[11]

M. Eisen, Mathematical models in cell biology and cancer chemotherapy, in Lect. Notes Biomath., vol. 30  Google Scholar

[12]

J. K. Hale, Ordinary Differential Equations, Dover Publication, Mineola, NY, 1980. Google Scholar

[13]

X. Han, Dynamical analysis of chemotherapy model with time-dependent infusion, Nonlinear Analysis: RWA, 34 (2017), 459-480.  doi: 10.1016/j.nonrwa.2016.09.001.  Google Scholar

[14]

P. E. Kloeden and C. Potzsche, Nonautonomous Dynamical Systems in the Life Sciences, Lecture Note in Math., Springer, New York, 2013. doi: 10.1007/978-3-319-03080-7_1.  Google Scholar

[15]

P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, in Mathematical Surveys and Monographs, Vol. 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[16]

P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumors with discrete delay, Int. J. Dynam. Control, 5 (2017), 872-892.  doi: 10.1007/s40435-015-0221-y.  Google Scholar

[17]

A. LopezJ. Seoane and M. Sanjuan, A validated mathematical model of tumor growth including tumor host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[18]

J. Mackay and G. Mensah, The Atlas of Disease and Stroke, Published by the World Health Organization in Collaboration with the Centers for Disease Control and Prevention, 2004. Google Scholar

[19]

J. Murray, Optimal drug regimens in cancer chemotherapy for single drug that block progression through the cell cycle, Math. Biosci., 123 (1994), 183-213.   Google Scholar

[20]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159-199.  doi: 10.1016/S0025-5564(99)00058-9.  Google Scholar

[21]

J. Panetta and J. Adam, A mathematical model of cycle-specific chemotherapy, Math. Comput. Modeling, 22 (1995), 67-82.   Google Scholar

[22]

S. PinhoH. I. Freedman and F. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comput. Modeling, 36 (2002), 773-803.  doi: 10.1016/S0895-7177(02)00227-3.  Google Scholar

[23]

M. S. Rajput and P. Agrawal, Microspheres in cancer therapy, Indian J. Cancer, 47 (2010), 458-468.   Google Scholar

[24]

E. D. Sontag, Lecture Notes in Mathematical Biology, 2006. Google Scholar

[25]

E. D. Sontag, Lecture Notes on Mathematical Systems Biology, Northeastern University, Boston, 2018. Google Scholar

[26]

T. Wheldon, Mathematical Models in Cancer Research, Adam Hilger, Bristol, 1988. Google Scholar

Figure 1.  Chemotherapy with time-dependent infusion $ \mu(t) = 4 + 2 \sin 0.04 t $, resulting a successful treatment where all cancer cells are removed and normal cells remain
Figure 2.  Chemotherapy with time-dependent infusion $ \hat{\mu} = 4 $, resulting a failed treatment where all normal cells are removed and cancer cells remain
Table 1.  Description of parameters in the chemotherapy model
Parameter Description
$ b_{1} $ (1/time) Per capita growth rate of cancer cells
$ b_{2} $ (1/time) Per capita growth rate of normal cells
$ \kappa_{1} $ (mass/vol) Environmental carrying capacity of cancer cells
$ \kappa_{2} $ (mass/vol) Environmental carrying capacity of normal cells
$ d_1 $ (vol/time$ \cdot $mass) Intraspecific competition coefficient of cancer on normal cells
$ d_2 $ (vol/time$ \cdot $mass) Intraspecific competition coefficient of normal on cancer cells
$ r_1 $ (1) Consumption effectiveness of cancer cells on the agent
$ r_2 $ (1) Consumption effectiveness of normal cells on the agent
Parameter Description
$ b_{1} $ (1/time) Per capita growth rate of cancer cells
$ b_{2} $ (1/time) Per capita growth rate of normal cells
$ \kappa_{1} $ (mass/vol) Environmental carrying capacity of cancer cells
$ \kappa_{2} $ (mass/vol) Environmental carrying capacity of normal cells
$ d_1 $ (vol/time$ \cdot $mass) Intraspecific competition coefficient of cancer on normal cells
$ d_2 $ (vol/time$ \cdot $mass) Intraspecific competition coefficient of normal on cancer cells
$ r_1 $ (1) Consumption effectiveness of cancer cells on the agent
$ r_2 $ (1) Consumption effectiveness of normal cells on the agent
[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (175)
  • HTML views (156)
  • Cited by (1)

Other articles
by authors

[Back to Top]