April  2020, 19(4): 1891-1914. doi: 10.3934/cpaa.2020083

Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary

1. 

Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid

2. 

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain

3. 

Grupo de Investigación Dinámica No Lineal, ICAI, Universidad Pontificia de Comillas, Madrid, Spain

* Corresponding author

Dedicated to Tomás Caraballo on the occasion of his 60-th birthday

Received  July 2019 Revised  October 2019 Published  January 2020

Fund Project: This first author (JMA) has been partially supported by grants MTM2016-75465-P, ICMAT Severo Ochoa project SEV-2015-0554, MICINN, Spain and Grupo de Investigación CADEDIF, UCM. The second author (MVP) has been partially supported by grant MTM2016-75465-P MICINN, Spain and Grupo de Investigación CADEDIF, UCM.

In this work we consider higher dimensional thin domains with the property that both boundaries, bottom and top, present oscillations of weak type. We consider the Laplace operator with Neumann boundary conditions and analyze the behavior of the solutions as the thin domain shrinks to a fixed domain $ \omega\subset \mathbb{R}^n $. We obtain the convergence of the resolvent of the elliptic operators in the sense of compact convergence of operators, which in particular implies the convergence of the spectra. This convergence of the resolvent operators will allow us to conclude the global dynamics, in terms of the global attractors of a reaction diffusion equation in the thin domains. In particular, we show the upper semicontinuity of the attractors and stationary states. An important case treated is the case of a quasiperiodic situation, where the bottom and top oscillations are periodic but with period rationally independent.

Citation: José M. Arrieta, Manuel Villanueva-Pesqueira. Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1891-1914. doi: 10.3934/cpaa.2020083
References:
[1]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.  Google Scholar

[2]

N. Ansini and A. Braides, Homogenization of oscillating boundaries and applications to thin films, J. Anal. Math, 83 (2001), 151-182.  doi: 10.1007/BF02790260.  Google Scholar

[3]

J. M. Arrieta, Spectral Properties of Schrödinger Operators under Perturbations of the Domain, Ph.D. Thesis, Georgia Institute of Technology, 1991.  Google Scholar

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, Journal of Diff Equations, 199 (2004), 143-178.  doi: 10.1007/BF02790260.  Google Scholar

[5]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅰ. Continuity of the set of equilibria, Journal of Diff. Equations, 231 (2006), 551-597.  doi: 10.1016/j.jde.2006.06.002.  Google Scholar

[6]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅱ. The limiting problem, Journal of Diff. Equations, 247 (2009), 174-202.  doi: 10.1016/j.jde.2009.03.014.  Google Scholar

[7]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅲ. Continuity of attractors, Journal of Diff. Equations, 247 (2009), 225-259.  doi: 10.1016/j.jde.2008.12.014.  Google Scholar

[8]

J. M. ArrietaM. C. CarvalhoPereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.  Google Scholar

[9]

J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathematiques Pures et Apliquees, 96 (2011), 29–57. doi: 10.1016/j.matpur.2011.02.003.  Google Scholar

[10]

J. M. Arrieta and M. C. Pereira, The Neumann problem in thin domains with very highly oscillatory boundaries, Journal of Mathematical Analysis and Applications, 444 (2013), 86–104. doi: 10.1016/j.jmaa.2013.02.061.  Google Scholar

[11]

J. M. Arrieta and E. Santamaría, Distance of attractors of reaction-diffusion equations in thin domains, Journal of Differential Equations, 263 (2017), 5459-5506.  doi: 10.1016/j.jde.2017.06.023.  Google Scholar

[12]

J. M. Arrieta and M. Villanueva-Pesqueira, Thin domains with doubly oscillatory boundary, Mathematical Methods in Applied Science, 37 (2014), 158-166.  doi: 10.1002/mma.2875.  Google Scholar

[13]

M. Arrieta and M. Villanueva-Pesqueira, Thin domains with non-smooth periodic oscillatory boundaries, Journal of Mathematical Analysis and Applications, 446 (2017), 30-164.  doi: 10.1016/j.jmaa.2016.08.039.  Google Scholar

[14]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[15]

A. G. BelyaevA. L. Pyatnitskii and G. A. Chechkin, Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary, Siberian Math. J., 39 (1998), 621-644.  doi: 10.1007/BF02673049.  Google Scholar

[16]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publ. Company, 1978.  Google Scholar

[17]

A. S. Besicovitch, Almost Periodic Functions, Dover, 1954.  Google Scholar

[18]

D. BlanchardA. Gaudiello and G. Griso, Junction of a periodic family of elastic rods with a thin plate, Part Ⅱ, J. Math. Pures Appl, 88 (2007), 149-190.  doi: 10.1016/j.matpur.2007.04.004.  Google Scholar

[19]

H. Bohr, Almost Periodic Functions, New York: Chelsea, 1947.  Google Scholar

[20]

A. N. Carvalho, J. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical-Systems, Applied Mathematical Sciences, Vol. 182, Springer, 2012. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[21]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numerical Functional Analysis and Optimization, 27 (2006), 785-829.  doi: 10.1080/01630560600882723.  Google Scholar

[22]

J. Casado-DíazM. Luna-Laynez and F. J. Suárez-Grau, Asymptotic behavior of the Navier-Stokes system in a thin domain with Navier condition on a slightly rough boundary, SIAM J. Math. Anal., 45 (2013), 1641-1674.  doi: 10.1137/120873479.  Google Scholar

[23]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer Verlag, 1999. doi: 10.1007/978-1-4612-2158-6.  Google Scholar

[24]

D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, 1999.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathe. Surveys and Monographs 25 MAS, 1998.  Google Scholar

[26]

J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures and Appl., 71 (1992), 33-95.   Google Scholar

[27]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Math., 840, Springer-Verlag, 1981.  Google Scholar

[28]

O. V. Kapustyan and J. Valero, On the connecgtedness and asymptotic behaviour of solutions of reaction-diffusion systems, Journal of Math. Anal. and Appl., 323 (2006), 614-633.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[29]

O. V. KapustyanP. O Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Analysis, 323 (2006), 614-633.  doi: 10.3934/dcds.2014.34.4155.  Google Scholar

[30]

C. Komo, Influence of surface roughness to solutions of the Boussinesq equations with Robin boundary condition, Rev Mat Complut., 28 (2015), 123-155.  doi: 10.1007/s13163-014-0152-8.  Google Scholar

[31]

S. M. Kozlov, Averaging differential operators with almost-periodic rapidly oscillating coefficients, Math. USSR-Sb., 35 (1979), 481-498.   Google Scholar

[32]

T. A. Mel'nyk and A. V. Popov, Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness, Nonlinear Oscil., 13 (2010), 57-84.  doi: 10.1007/s11072-010-0101-5.  Google Scholar

[33]

N. Meunier and J. Van Schaftingen, Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl., 84 (2005), 1716-1743.  doi: 10.1016/j.matpur.2005.08.003.  Google Scholar

[34]

O. A. Oleinik and V. V. Zhikoz, On the homogenization of elliptic operators with almost-periodic coefficients, Rend. Sem. Mat. Fis. Milano, 52 (1982), 149-166.  doi: 10.1007/BF02925004.  Google Scholar

[35]

M. C. Pereira, Parabolic problems in highly oscillating thin domains, Ann. Mat. Pura Appl., 194 (2015), 1203-1244.  doi: 10.1007/s10231-014-0421-7.  Google Scholar

[36]

G. Raugel, Dynamics of partial differential equations on thin domains, in Dynamical Systems Montecatini Terme, (1994), 208–315, Lecture Notes in Math., 1609, Springer, Berlin, 1995., doi: 10.1007/BFb0095241.  Google Scholar

[37]

E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer Verlag, 1980.  Google Scholar

[38]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[39]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅰ, Math. Ann., 190 (1970), 45-92.  doi: 10.1007/BF01349967.  Google Scholar

[40]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅱ, Math. Z., 120 (1971), 231-264.  doi: 10.1007/BF01117498.  Google Scholar

[41]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅲ, Linear Operators and Approximation, (Proc. Conf., Oberwolfach, 1971), 196–216, Internat. Ser. Numer. Math., Vol. 20, Birkhuser, (1972).  Google Scholar

[42]

R. Teman, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[43]

G. Vainikko, Approximative methods for nonlinear equations (two approaches to the convergence problem), Nonlinear Analysis, Theory, Methods and Applications, 2 (1978), 647-687.  doi: 10.1016/0362-546X(78)90013-5.  Google Scholar

[44]

G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Teubner-Texte zur Mathematik. B. G. Teubner Verlag, Leipzig, 1976.  Google Scholar

show all references

References:
[1]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.  Google Scholar

[2]

N. Ansini and A. Braides, Homogenization of oscillating boundaries and applications to thin films, J. Anal. Math, 83 (2001), 151-182.  doi: 10.1007/BF02790260.  Google Scholar

[3]

J. M. Arrieta, Spectral Properties of Schrödinger Operators under Perturbations of the Domain, Ph.D. Thesis, Georgia Institute of Technology, 1991.  Google Scholar

[4]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, Journal of Diff Equations, 199 (2004), 143-178.  doi: 10.1007/BF02790260.  Google Scholar

[5]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅰ. Continuity of the set of equilibria, Journal of Diff. Equations, 231 (2006), 551-597.  doi: 10.1016/j.jde.2006.06.002.  Google Scholar

[6]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅱ. The limiting problem, Journal of Diff. Equations, 247 (2009), 174-202.  doi: 10.1016/j.jde.2009.03.014.  Google Scholar

[7]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains Ⅲ. Continuity of attractors, Journal of Diff. Equations, 247 (2009), 225-259.  doi: 10.1016/j.jde.2008.12.014.  Google Scholar

[8]

J. M. ArrietaM. C. CarvalhoPereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.  Google Scholar

[9]

J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathematiques Pures et Apliquees, 96 (2011), 29–57. doi: 10.1016/j.matpur.2011.02.003.  Google Scholar

[10]

J. M. Arrieta and M. C. Pereira, The Neumann problem in thin domains with very highly oscillatory boundaries, Journal of Mathematical Analysis and Applications, 444 (2013), 86–104. doi: 10.1016/j.jmaa.2013.02.061.  Google Scholar

[11]

J. M. Arrieta and E. Santamaría, Distance of attractors of reaction-diffusion equations in thin domains, Journal of Differential Equations, 263 (2017), 5459-5506.  doi: 10.1016/j.jde.2017.06.023.  Google Scholar

[12]

J. M. Arrieta and M. Villanueva-Pesqueira, Thin domains with doubly oscillatory boundary, Mathematical Methods in Applied Science, 37 (2014), 158-166.  doi: 10.1002/mma.2875.  Google Scholar

[13]

M. Arrieta and M. Villanueva-Pesqueira, Thin domains with non-smooth periodic oscillatory boundaries, Journal of Mathematical Analysis and Applications, 446 (2017), 30-164.  doi: 10.1016/j.jmaa.2016.08.039.  Google Scholar

[14]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[15]

A. G. BelyaevA. L. Pyatnitskii and G. A. Chechkin, Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary, Siberian Math. J., 39 (1998), 621-644.  doi: 10.1007/BF02673049.  Google Scholar

[16]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publ. Company, 1978.  Google Scholar

[17]

A. S. Besicovitch, Almost Periodic Functions, Dover, 1954.  Google Scholar

[18]

D. BlanchardA. Gaudiello and G. Griso, Junction of a periodic family of elastic rods with a thin plate, Part Ⅱ, J. Math. Pures Appl, 88 (2007), 149-190.  doi: 10.1016/j.matpur.2007.04.004.  Google Scholar

[19]

H. Bohr, Almost Periodic Functions, New York: Chelsea, 1947.  Google Scholar

[20]

A. N. Carvalho, J. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical-Systems, Applied Mathematical Sciences, Vol. 182, Springer, 2012. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[21]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numerical Functional Analysis and Optimization, 27 (2006), 785-829.  doi: 10.1080/01630560600882723.  Google Scholar

[22]

J. Casado-DíazM. Luna-Laynez and F. J. Suárez-Grau, Asymptotic behavior of the Navier-Stokes system in a thin domain with Navier condition on a slightly rough boundary, SIAM J. Math. Anal., 45 (2013), 1641-1674.  doi: 10.1137/120873479.  Google Scholar

[23]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer Verlag, 1999. doi: 10.1007/978-1-4612-2158-6.  Google Scholar

[24]

D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, 1999.  Google Scholar

[25]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathe. Surveys and Monographs 25 MAS, 1998.  Google Scholar

[26]

J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures and Appl., 71 (1992), 33-95.   Google Scholar

[27]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Math., 840, Springer-Verlag, 1981.  Google Scholar

[28]

O. V. Kapustyan and J. Valero, On the connecgtedness and asymptotic behaviour of solutions of reaction-diffusion systems, Journal of Math. Anal. and Appl., 323 (2006), 614-633.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[29]

O. V. KapustyanP. O Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Analysis, 323 (2006), 614-633.  doi: 10.3934/dcds.2014.34.4155.  Google Scholar

[30]

C. Komo, Influence of surface roughness to solutions of the Boussinesq equations with Robin boundary condition, Rev Mat Complut., 28 (2015), 123-155.  doi: 10.1007/s13163-014-0152-8.  Google Scholar

[31]

S. M. Kozlov, Averaging differential operators with almost-periodic rapidly oscillating coefficients, Math. USSR-Sb., 35 (1979), 481-498.   Google Scholar

[32]

T. A. Mel'nyk and A. V. Popov, Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness, Nonlinear Oscil., 13 (2010), 57-84.  doi: 10.1007/s11072-010-0101-5.  Google Scholar

[33]

N. Meunier and J. Van Schaftingen, Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl., 84 (2005), 1716-1743.  doi: 10.1016/j.matpur.2005.08.003.  Google Scholar

[34]

O. A. Oleinik and V. V. Zhikoz, On the homogenization of elliptic operators with almost-periodic coefficients, Rend. Sem. Mat. Fis. Milano, 52 (1982), 149-166.  doi: 10.1007/BF02925004.  Google Scholar

[35]

M. C. Pereira, Parabolic problems in highly oscillating thin domains, Ann. Mat. Pura Appl., 194 (2015), 1203-1244.  doi: 10.1007/s10231-014-0421-7.  Google Scholar

[36]

G. Raugel, Dynamics of partial differential equations on thin domains, in Dynamical Systems Montecatini Terme, (1994), 208–315, Lecture Notes in Math., 1609, Springer, Berlin, 1995., doi: 10.1007/BFb0095241.  Google Scholar

[37]

E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer Verlag, 1980.  Google Scholar

[38]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[39]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅰ, Math. Ann., 190 (1970), 45-92.  doi: 10.1007/BF01349967.  Google Scholar

[40]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅱ, Math. Z., 120 (1971), 231-264.  doi: 10.1007/BF01117498.  Google Scholar

[41]

F. Stummel, Diskrete Konvergenz linearer Operatoren Ⅲ, Linear Operators and Approximation, (Proc. Conf., Oberwolfach, 1971), 196–216, Internat. Ser. Numer. Math., Vol. 20, Birkhuser, (1972).  Google Scholar

[42]

R. Teman, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[43]

G. Vainikko, Approximative methods for nonlinear equations (two approaches to the convergence problem), Nonlinear Analysis, Theory, Methods and Applications, 2 (1978), 647-687.  doi: 10.1016/0362-546X(78)90013-5.  Google Scholar

[44]

G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Teubner-Texte zur Mathematik. B. G. Teubner Verlag, Leipzig, 1976.  Google Scholar

Figure 1.  Thin domain $ R^ \epsilon $ with doubly weak oscillatory boundary
Figure 2.  Thin domain $ R_a^\epsilon $ obtained from $ R^ \epsilon $ of Figure 1
[1]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

[2]

Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure & Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031

[3]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[4]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[5]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[6]

Xiao-Ping Wang, Ke Wang, Weinan E. Simulations of 3-D domain wall structures in thin films. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 373-389. doi: 10.3934/dcdsb.2006.6.373

[7]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[8]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

[9]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[10]

Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619

[11]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[12]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[13]

Woocheol Choi. Maximal functions of multipliers on compact manifolds without boundary. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1885-1902. doi: 10.3934/cpaa.2015.14.1885

[14]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[15]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[16]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[17]

José M. Arrieta, Ariadne Nogueira, Marcone C. Pereira. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4217-4246. doi: 10.3934/dcdsb.2019079

[18]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[19]

D. Sanchez. Boundary layer on a high-conductivity domain. Communications on Pure & Applied Analysis, 2002, 1 (4) : 547-564. doi: 10.3934/cpaa.2002.1.547

[20]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

2018 Impact Factor: 0.925

Article outline

Figures and Tables

[Back to Top]