April  2020, 19(4): 1915-1930. doi: 10.3934/cpaa.2020084

On a delayed epidemic model with non-instantaneous impulses

1. 

College of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

2. 

Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

3. 

Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

*Corresponding author.

Dedicated to professor Tomás Caraballo on the occasion of his 60th birthday

Received  April 2019 Revised  October 2019 Published  January 2020

We introduce a non-instantaneous pulse vaccination model. Non-instantaneous impulsive nonlinear differential equations provide an adequate biomathematical model of some medical problems. In this paper we study some basic properties such as the attractiveness of the infection-free periodic solution and the permanence of some sub-population for a vaccine model where a constant fraction of the susceptible population is vaccinated in some periodic way. Our model is a system of nonlinear differential equations with impulses.

Citation: Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084
References:
[1]

R. AgarwalS. Hristova and D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[2]

R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017. doi: 10.1007/978-3-319-66384-5.  Google Scholar

[3]

L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.  doi: 10.1016/j.aml.2017.02.019.  Google Scholar

[4]

L. BaiJ. J. Nieto and X. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.  doi: 10.22436/jnsa.010.05.14.  Google Scholar

[5] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.   Google Scholar
[6]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[8]

K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.  doi: 10.1007/s002850050051.  Google Scholar

[9]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000.  Google Scholar

[10]

S. GaoL. ChenJ. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.  doi: 10.1016/j.chaos.2006.04.061.  Google Scholar

[11]

H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093. doi: 10.1142/S1793524517500930.  Google Scholar

[12]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[13]

J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159. doi: 10.1016/j.physa.2015.10.055.  Google Scholar

[14]

A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.  doi: 10.1016/j.aml.2018.03.014.  Google Scholar

[15]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[16]

Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57. doi: 10.4236/am.2011.21007.  Google Scholar

[17]

D. J. Nokes and J. Swinton, Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.   Google Scholar

[18]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812798664.  Google Scholar

[19]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[20]

R. Terzieva, Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.   Google Scholar

[21]

J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162. doi: 10.1016/j.aml.2017.04.010.  Google Scholar

[22]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[23]

D. YangJ. Wang and D. O'Regan, On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.  doi: 10.1016/j.crma.2018.01.001.  Google Scholar

[24]

B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018. doi: 10.1186/s13661-018-1048-1.  Google Scholar

show all references

References:
[1]

R. AgarwalS. Hristova and D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[2]

R. Agarwal, S. Hristova and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer International Publishing, 2017. doi: 10.1007/978-3-319-66384-5.  Google Scholar

[3]

L. Bai and J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44-48.  doi: 10.1016/j.aml.2017.02.019.  Google Scholar

[4]

L. BaiJ. J. Nieto and X. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440-2448.  doi: 10.22436/jnsa.010.05.14.  Google Scholar

[5] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, CRC Press, 1993.   Google Scholar
[6]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, Journal of Fixed Point Theory and Applications, 21 (2019), 21. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[7]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag GmbH, 2012. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[8]

K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol., 35 (1996), 240-260.  doi: 10.1007/s002850050051.  Google Scholar

[9]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical & Computational Biology, Wiley, 2000.  Google Scholar

[10]

S. GaoL. ChenJ. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045.  doi: 10.1016/j.chaos.2006.04.061.  Google Scholar

[11]

H. Guo, L. Chen and X. Song, Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control, Int. J. Biomath., 10 (2017), 1750093. doi: 10.1142/S1793524517500930.  Google Scholar

[12]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[13]

J. Jiao, S. Cai and L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A: Statistical Mechanics and its Applications, 449 (2016), 145 – 159. doi: 10.1016/j.physa.2015.10.055.  Google Scholar

[14]

A. Khaliq and M. U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Applied Mathematics Letters, 83 (2018), 95-102.  doi: 10.1016/j.aml.2018.03.014.  Google Scholar

[15]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[16]

Y. Luo, S. Gao and S. Yan, Pulse vaccination strategy in an epidemic model with two susceptible subclasses and time delay, Appl. Math., 2 (2011), 57. doi: 10.4236/am.2011.21007.  Google Scholar

[17]

D. J. Nokes and J. Swinton, Vaccination in pulses: a strategy for global eradication of measles and polio?, Trends Microbiol., 5 (1997), 14-19.   Google Scholar

[18]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812798664.  Google Scholar

[19]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2010. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[20]

R. Terzieva, Some phenomena for non-instantaneous impulsive differential equations, Int. J. Pure Appl. Math., 119 (2018), 483-490.   Google Scholar

[21]

J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73 (2017), 157 – 162. doi: 10.1016/j.aml.2017.04.010.  Google Scholar

[22]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[23]

D. YangJ. Wang and D. O'Regan, On the orbital hausdorff dependence of differential equations with non-instantaneous impulses, Comptes Rendus Mathematique, 356 (2018), 150-171.  doi: 10.1016/j.crma.2018.01.001.  Google Scholar

[24]

B. Zhu and L. Liu, Periodic boundary value problems for fractional semilinear integro-differential equations with non-instantaneous impulses, Boundary Value Problems, 2018. doi: 10.1186/s13661-018-1048-1.  Google Scholar

Figure 1.  Simulation with $ R^*<1 $, infection-free solution
Figure 2.  Simulation with $ R_*>1 $, permanence of infected population
[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020032

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (262)
  • HTML views (159)
  • Cited by (2)

Other articles
by authors

[Back to Top]