\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Controllability of the one-dimensional fractional heat equation under positivity constraints

Dedicated to professor Tomás Caraballo on the occasion of his 60th birthday

Abstract / Introduction Full Text(HTML) Figure(13) Related Papers Cited by
  • In this paper, we analyze the controllability properties under positivity constraints on the control or the state of a one-dimensional heat equation involving the fractional Laplacian $ (-d_x^{\,2})^{s}{} $ ($ 0<s<1 $) on the interval $ (-1,1) $. We prove the existence of a minimal (strictly positive) time $ T_{\rm min} $ such that the fractional heat dynamics can be controlled from any initial datum in $ L^2(-1,1) $ to a positive trajectory through the action of a positive control, when $ s>1/2 $. Moreover, we show that in this minimal time constrained controllability is achieved by means of a control that belongs to a certain space of Radon measures. We also give some numerical simulations that confirm our theoretical results.

    Mathematics Subject Classification: 35K05, 35R11, 35S05, 93B05, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graphic of the function $ q(x) $

    Figure 2.  Evolution in the time interval $ (0,T_{\rm min}) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically

    Figure 8.  Evolution in the time interval $ (0,T_{\rm min}) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically

    Figure 3.  Minimal-time control: space-time distribution of the impulses. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow

    Figure 4.  Minimal-time control: intensity of the impulses in logarithmic scale. In the $ (t,x) $ plane in blue the time $ t $ varies from $ t = 0 $ (left) to $ t = T_{\rm min} $ (right)

    Figure 10.  Minimal-time control: intensity of the impulses in logarithmic scale. In the $ (t,x) $ plane in blue the time $ t $ varies from $ t = 0 $ (left) to $ t = T_{\rm min} $ (right)

    Figure 5.  Evolution in the time interval $ (0,0.9) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically

    Figure 6.  Behavior of the control in time $ T = 0.9 $. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow. The atomic nature is lost

    Figure 7.  Evolution in the time interval $ (0,0.7) $ of the solution of (2.1) with $ s = 0.8 $ (left) and of the control $ u $ (right), under the constraint $ u\geq 0 $. The bold characters highlight the control region $ \omega = (-0.3,0.8) $. The control remains inactive during the entire time interval, and the equation is not controllable

    Figure 9.  Minimal-time control: space-time distribution of the impulses. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow

    Figure 11.  Evolution in the time interval $ (0,0.4) $ of the solution of (2.1) with $ s = 0.8 $. The blue curve is the target we want to reach while the green bullets indicate the target we computed numerically

    Figure 12.  Behavior of the control in time $ T = 0.4 $. The white lines delimit the control region $ \omega = (-0.3,0.8) $. The regions in which the control is active are marked in yellow. The atomic nature is lost

    Figure 13.  Evolution in the time interval $ (0,0.15) $ of the solution of (2.1) with $ s = 0.8 $ (left) and of the control $ u $ (right), under the constraint $ u\geq 0 $. The bold characters highlight the control region $ \omega = (-0.3,0.8) $. The equation is not controllable

  • [1] DyCon Toolbox, https://deustotech.github.io/dycon-platform-documentation/, 2019.,
    [2] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, vol. 96 of Monographs in Mathematics, 2nd edition doi: 10.1007/978-3-0348-0087-7.
    [3] U. Biccari and V. Hernández-Santamaría, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA J. Math. Control. Inf., 36.4 (2019), 1199-1235.  doi: 10.1109/TAC.1985.1103850.
    [4] U. BiccariM. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.  doi: 10.1515/ans-2017-0014.
    [5] U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, in Recent Advances in PDEs: Analysis, Numerics and Control, Springer, 2018, 233-249.
    [6] M. BonforteA. Figalli and X. Ros-Oton, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains, Comm. Pure Appl. Math., 70 (2017), 1472-1508.  doi: 10.1002/cpa.21673.
    [7] P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Comm. Appl. Ind. Math., 2 (2011).
    [8] P. CannarsaG. Floridia and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, J. Math. Pures Appl., 108 (2017), 425-458.  doi: 10.1016/j.matpur.2017.07.002.
    [9] P. Cannarsa and A. Y. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293-1311.  doi: 10.3934/dcdsb.2010.14.1293.
    [10] W. L. Chan and B. Z. Guo, Optimal birth control of population dynamics. Ⅱ. Problems with free final time, phase constraints, and mini-max costs, J. Math. Anal. Appl., 146 (1990), 523-539.  doi: 10.1016/0022-247X(90)90322-7.
    [11] R. M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow, Appl. Math. Letters, 17 (2004), 697-701.  doi: 10.1016/S0893-9659(04)90107-3.
    [12] R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim, 48 (2009), 2032-2050.  doi: 10.1137/080716372.
    [13] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [14] A. A. DubkovB. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.  doi: 10.1142/S0218127408021877.
    [15] C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sec. A Math., 125 (1995), 31-61.  doi: 10.1017/S0308210500030742.
    [16] E. Fernandez-Cara and A. M{ü}nch, Numerical exact controllability of the 1d heat equation: duality and Carleman weights, J. Optim. Theor. Appl., 163 (2014), 253-285.  doi: 10.1007/s10957-013-0517-z.
    [17] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincare Nonlin. Anal., 17 (2000), 583-616.  doi: 10.1016/S0294-1449(00)00117-7.
    [18] G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257 (2014), 3382-3422.  doi: 10.1016/j.jde.2014.06.016.
    [19] R. FourerD. M. Gay and B. W. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554. 
    [20] O. Glass, On the controllability of the 1-d isentropic euler equation, J. Eur. Math. Soc., 9 (2007), 427-486.  doi: 10.4171/JEMS/85.
    [21] R. GlowinskiJ.-L. Lions and  J. HeExact and Approximate Controllability for Distributed Parameter Systems. A Numerical Approach, Cambridge University Press, 2008.  doi: 10.1017/S0962492900002452.
    [22] R. GorenfloF. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87-103.  doi: 10.1016/j.chaos.2007.01.052.
    [23] N. HegoburuP. Magal and M. Tucsnak, Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim., 56 (2018), 723-750.  doi: 10.1137/16M1103087.
    [24] V. Keyantuo and M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Contin. Dyn. Syst., 36 (2016), 3719-3739.  doi: 10.3934/dcds.2016.36.3719.
    [25] M. Kwaśnicki, Spectral analysis of subordinate Brownian motions in half-line, Studia Math., 206 (2011), 211-271.  doi: 10.4064/sm206-3-2.
    [26] M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402. 
    [27] K. Le Balc'h, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., to appear
    [28] T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.
    [29] M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. a theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Series A Math. Phys. Sci., 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.
    [30] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968.
    [31] J. LohéacE. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., 27 (2017), 1587-1644.  doi: 10.1142/S0218202517500270.
    [32] D. Maity, M. Tucsnak and E. Zuazua, Controllability of a class of infinite dimensional systems with age structure, Submitted.
    [33] D. MaityM. Tucsnak and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl., 129 (2019), 153-179.  doi: 10.1016/j.matpur.2018.12.006.
    [34] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.
    [35] A. MartinM. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Math. Prog., 105 (2006), 563-582.  doi: 10.1007/s10107-005-0665-5.
    [36] S. MicuI. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation, J. Funct. Anal., 263 (2012), 25-49.  doi: 10.1016/j.jfa.2012.04.009.
    [37] D. Pighin and E. Zuazua, Controllability under positivity constraints of semilinear heat equations, Math. Control. Relat. Fields, 8 (2018), 935-964. 
    [38] D. Pighin and E. Zuazua, Controllability under positivity constraints of multi-d wave equations, in Trends in Control Theory and Partial Differential Equations, Springer, 2019, 195-232.
    [39] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.
    [40] D. A. Rüland, Unique continuation for fractional schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.
    [41] W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, 1990, 676-681.
    [42] L. Schwartz, Étude des sommes d'exponentielles réelles, Hermann, Paris, 1943.
    [43] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.
    [44] M. C. Steinbach, On pde solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.  doi: 10.1016/j.cam.2006.04.018.
    [45] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
    [46] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.  doi: 10.1007/s11118-014-9443-4.
    [47] M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037-2063.  doi: 10.1137/18M117145X.
    [48] M. Warma and S. Zamorano, Null controllability from the exterior of a one-dimensional nonlocal heat equation, arXiv: 1811.10477.
    [49] E. Zuazua, Controllability of partial differential equations, 3ème cycle. Castro Urdiales, Espagne.
  • 加载中

Figures(13)

SHARE

Article Metrics

HTML views(2914) PDF downloads(387) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return