April  2020, 19(4): 1997-2013. doi: 10.3934/cpaa.2020088

Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor

1. 

Instituto de Ciências Matemáticas e de Computaçao, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Sevilla 41012, Spain

3. 

Mathematical Institute, University of Warwick, Coventry CV4 7AL, UK

*Corresponding author

Dedicated to professor Tomás Caraballo on the occasion of his 60th birthday

Received  August 2019 Revised  October 2019 Published  January 2020

We investigate the forwards asymptotic dynamics of non-autonomous differential equations. Our approach is centred on those models for which the vector field is only defined for non-negative times, that is, the laws of evolution are not given, or simply not known, for times before a given time (say time $ t = 0 $). We will be interested in the cases for which the 'driving' (time shift) semigroup has a global attractor in which backwards solutions are not necessarily unique. Considering vector fields in the global attractor of the driving semigroup allows for a natural way to extend vector fields, defined only for non-negative times, to the whole real line. These objects play a crucial role in the description of the asymptotic dynamics of our non-autonomous differential equation. We will study, in some particular cases, the isolated invariant sets of the associated skew-product semigroup with the aim of characterising the global attractor. We develop an example for which we derive decomposition for the global attractor of skew-product semigroup from the characterisation of the attractor of the associated driving semigroup.

Citation: Alexandre N. Carvalho, José A. Langa, James C. Robinson. Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1997-2013. doi: 10.3934/cpaa.2020088
References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbations, Nonlinearity, 24 (2011), 2099117. doi: 10.1088/0951-7715/24/7/010.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations, Studies in Mathematics and its Applications 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

T. Caraballo, J. C. Jara, J. A. Langa and Z. Liu, Morse decomposition of attractors for non-autonomous dynamical systems, Advanced Nonlinear Studies, to appear. doi: 10.1515/ans-2013-0204.  Google Scholar

[4]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.  doi: 10.1016/j.jde.2009.01.007.  Google Scholar

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[6]

D. N. Cheban, Global Attractors of Non-autonomous Dissipative Dynamical Systems, World Scientific, New Jersey, 2004. doi: 10.1142/9789812563088.  Google Scholar

[7]

V. V. Chepyzhov and M.I. Vishik, Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, vol.49. American Mathematical Society, Providence, RI, 2001.  Google Scholar

[9]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[10]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number 25 (American Mathematical Society, Providence, RI), 1988.  Google Scholar

[11]

P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, AMS, Providence RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[13]

J. A. LangaJ. C. RobinsonA. Rodríguez-BernalA. Suárez and A. Vidal-López, Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations, Discrete Contin. Dyn. Syst., 18 (2007), 483-497.  doi: 10.3934/dcds.2007.18.483.  Google Scholar

[14]

J. A. LangaJ. C. RobinsonA. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differential Equations, 234 (2007), 607-625.  doi: 10.1016/j.jde.2006.11.016.  Google Scholar

[15]

K. MischaikowH. Smith and H. R. Thieme, Asymptotically autonomous semiflows: chain recurrent and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.  doi: 10.2307/2154964.  Google Scholar

[16]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathemathics 2002, Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[17]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathemathics 1907, Springer-Verlag, New York, 2007.  Google Scholar

[18]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, 1987. doi: 10.1007/978-3-642-72833-4.  Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283.  doi: 10.2307/1994645.  Google Scholar

[20]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

show all references

References:
[1]

E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbations, Nonlinearity, 24 (2011), 2099117. doi: 10.1088/0951-7715/24/7/010.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations, Studies in Mathematics and its Applications 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[3]

T. Caraballo, J. C. Jara, J. A. Langa and Z. Liu, Morse decomposition of attractors for non-autonomous dynamical systems, Advanced Nonlinear Studies, to appear. doi: 10.1515/ans-2013-0204.  Google Scholar

[4]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.  doi: 10.1016/j.jde.2009.01.007.  Google Scholar

[5]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[6]

D. N. Cheban, Global Attractors of Non-autonomous Dissipative Dynamical Systems, World Scientific, New Jersey, 2004. doi: 10.1142/9789812563088.  Google Scholar

[7]

V. V. Chepyzhov and M.I. Vishik, Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, vol.49. American Mathematical Society, Providence, RI, 2001.  Google Scholar

[9]

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[10]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number 25 (American Mathematical Society, Providence, RI), 1988.  Google Scholar

[11]

P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, AMS, Providence RI, 2011. doi: 10.1090/surv/176.  Google Scholar

[12]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[13]

J. A. LangaJ. C. RobinsonA. Rodríguez-BernalA. Suárez and A. Vidal-López, Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations, Discrete Contin. Dyn. Syst., 18 (2007), 483-497.  doi: 10.3934/dcds.2007.18.483.  Google Scholar

[14]

J. A. LangaJ. C. RobinsonA. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differential Equations, 234 (2007), 607-625.  doi: 10.1016/j.jde.2006.11.016.  Google Scholar

[15]

K. MischaikowH. Smith and H. R. Thieme, Asymptotically autonomous semiflows: chain recurrent and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.  doi: 10.2307/2154964.  Google Scholar

[16]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathemathics 2002, Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[17]

M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Mathemathics 1907, Springer-Verlag, New York, 2007.  Google Scholar

[18]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, 1987. doi: 10.1007/978-3-642-72833-4.  Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283.  doi: 10.2307/1994645.  Google Scholar

[20]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

Figure 2.2.  Global attractor for vector feld (2.4) in its positive hull Σ+.
[1]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[2]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[3]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[4]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[5]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[6]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[7]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[8]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[9]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[10]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[11]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[12]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[13]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[14]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[15]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[16]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[17]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[18]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[19]

Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119

[20]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (101)
  • HTML views (122)
  • Cited by (0)

[Back to Top]