April  2020, 19(4): 2035-2050. doi: 10.3934/cpaa.2020090

Nonclassical diffusion with memory lacking instantaneous damping

Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy

*Corresponding author

Dedicated to our colleague and friend Professor Tomás Caraballo on the occasion of his sixtieth birthday

Received  March 2019 Revised  May 2019 Published  January 2020

We consider the nonclassical diffusion equation with hereditary memory
$ u_t-\Delta u_t -\int_0^\infty \kappa(s)\Delta u(t-s)\,{{\rm{d}}} s +f(u) = g $
on a bounded three-dimensional domain. The main feature of the model is that the equation does not contain a term of the form
$ -\Delta u $
, contributing as an instantaneous damping. Setting the problem in the past history framework, we prove that the related solution semigroup possesses a global attractor of optimal regularity.
Citation: Monica Conti, Filippo Dell'Oro, Vittorino Pata. Nonclassical diffusion with memory lacking instantaneous damping. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2035-2050. doi: 10.3934/cpaa.2020090
References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.  doi: 10.1007/BF01202949.

[2]

G. I. BarenblattIu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303. 

[3]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Discrete Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.

[4]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627. 

[5]

V. V. ChepyzhovE. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291. 

[6]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273. 

[7]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.

[8]

M. ContiS. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2018), 21-45.  doi: 10.1142/S0218202508002590.

[9]

M. Conti and E. M. Marchini, Wave equations with memory: the minimal state approach, J. Math. Anal. Appl., 384 (2011), 607-625.  doi: 10.1016/j.jmaa.2011.06.009.

[10]

M. Conti and E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1-21.  doi: 10.1007/s00245-015-9290-8.

[11]

M. ContiE. M. Marchini and V. Pata, Semilinear wave equations of viscoelasticity in the minimal state framework, Discrete Contin. Dyn. Syst., 27 (2010), 1535-1552.  doi: 10.3934/dcds.2010.27.1535.

[12]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.

[13]

M. ContiE. M. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.

[14]

M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.  doi: 10.3934/dcds.2009.25.1209.

[15]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 554-569.  doi: 10.1007/BF00251609.

[16]

V. DaneseP. G. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.

[18]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Boston, 2002.

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988.

[20]

A. Haraux, Systèmes dynamiques dissipatifs et applications, MassonParis, 1991.

[21]

J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377-404. 

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4 (C.M. Dafermos and M. Pokorny, Eds.), Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.

[23]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.  doi: 10.1007/s00032-009-0098-3.

[24]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[26]

X. WangL. Yang and C. Zhong, Attractors for the nonclassical diffusion equation with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.  doi: 10.1016/j.jmaa.2009.09.029.

[27]

X. Wang and C. Zhong, Attractors for the non-autonomous nonclassical diffusion equation with fading memory, Nonlinear Anal., 71 (2009), 5733-5746.  doi: 10.1016/j.na.2009.05.001.

show all references

References:
[1]

E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.  doi: 10.1007/BF01202949.

[2]

G. I. BarenblattIu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303. 

[3]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Discrete Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.

[4]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627. 

[5]

V. V. ChepyzhovE. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291. 

[6]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273. 

[7]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.

[8]

M. ContiS. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2018), 21-45.  doi: 10.1142/S0218202508002590.

[9]

M. Conti and E. M. Marchini, Wave equations with memory: the minimal state approach, J. Math. Anal. Appl., 384 (2011), 607-625.  doi: 10.1016/j.jmaa.2011.06.009.

[10]

M. Conti and E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1-21.  doi: 10.1007/s00245-015-9290-8.

[11]

M. ContiE. M. Marchini and V. Pata, Semilinear wave equations of viscoelasticity in the minimal state framework, Discrete Contin. Dyn. Syst., 27 (2010), 1535-1552.  doi: 10.3934/dcds.2010.27.1535.

[12]

M. ContiE. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.

[13]

M. ContiE. M. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.  doi: 10.1090/S0002-9947-2013-06097-7.

[14]

M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.  doi: 10.3934/dcds.2009.25.1209.

[15]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 554-569.  doi: 10.1007/BF00251609.

[16]

V. DaneseP. G. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.

[18]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Boston, 2002.

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988.

[20]

A. Haraux, Systèmes dynamiques dissipatifs et applications, MassonParis, 1991.

[21]

J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377-404. 

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4 (C.M. Dafermos and M. Pokorny, Eds.), Elsevier, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.

[23]

V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.  doi: 10.1007/s00032-009-0098-3.

[24]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[25]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[26]

X. WangL. Yang and C. Zhong, Attractors for the nonclassical diffusion equation with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.  doi: 10.1016/j.jmaa.2009.09.029.

[27]

X. Wang and C. Zhong, Attractors for the non-autonomous nonclassical diffusion equation with fading memory, Nonlinear Anal., 71 (2009), 5733-5746.  doi: 10.1016/j.na.2009.05.001.

[1]

Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang. Attractors for a class of perturbed nonclassical diffusion equations with memory. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021261

[2]

Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021313

[3]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[4]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[5]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[6]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113

[7]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

[8]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105

[9]

Peng Gao. Limiting dynamics for stochastic nonclassical diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021288

[10]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[11]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure and Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[12]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[13]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[14]

Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165

[15]

Cung The Anh, Tang Quoc Bao. Dynamics of non-autonomous nonclassical diffusion equations on $R^n$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1231-1252. doi: 10.3934/cpaa.2012.11.1231

[16]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354

[17]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093

[18]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[19]

Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079

[20]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (462)
  • HTML views (123)
  • Cited by (4)

Other articles
by authors

[Back to Top]