We consider the nonclassical diffusion equation with hereditary memory
$ u_t-\Delta u_t -\int_0^\infty \kappa(s)\Delta u(t-s)\,{{\rm{d}}} s +f(u) = g $
on a bounded three-dimensional domain. The main feature of the model is that the equation does not contain a term of the form $ -\Delta u $, contributing as an instantaneous damping. Setting the problem in the past history framework, we prove that the related solution semigroup possesses a global attractor of optimal regularity.
Citation: |
[1] |
E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.
doi: 10.1007/BF01202949.![]() ![]() ![]() |
[2] |
G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
![]() |
[3] |
V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Discrete Cont. Dyn. Sys., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719.![]() ![]() ![]() |
[4] |
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
![]() |
[5] |
V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291.
![]() ![]() |
[6] |
V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.
![]() ![]() |
[7] |
M. Conti, V. Danese, C. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.
doi: 10.1353/ajm.2018.0008.![]() ![]() ![]() |
[8] |
M. Conti, S. Gatti and V. Pata, Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18 (2018), 21-45.
doi: 10.1142/S0218202508002590.![]() ![]() ![]() |
[9] |
M. Conti and E. M. Marchini, Wave equations with memory: the minimal state approach, J. Math. Anal. Appl., 384 (2011), 607-625.
doi: 10.1016/j.jmaa.2011.06.009.![]() ![]() ![]() |
[10] |
M. Conti and E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1-21.
doi: 10.1007/s00245-015-9290-8.![]() ![]() ![]() |
[11] |
M. Conti, E. M. Marchini and V. Pata, Semilinear wave equations of viscoelasticity in the minimal state framework, Discrete Contin. Dyn. Syst., 27 (2010), 1535-1552.
doi: 10.3934/dcds.2010.27.1535.![]() ![]() ![]() |
[12] |
M. Conti, E. M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.
doi: 10.1002/mma.3120.![]() ![]() ![]() |
[13] |
M. Conti, E. M. Marchini and V. Pata, Reaction-diffusion with memory in the minimal state framework, Trans. Amer. Math. Soc., 366 (2014), 4969-4986.
doi: 10.1090/S0002-9947-2013-06097-7.![]() ![]() ![]() |
[14] |
M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.
doi: 10.3934/dcds.2009.25.1209.![]() ![]() ![]() |
[15] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 554-569.
doi: 10.1007/BF00251609.![]() ![]() ![]() |
[16] |
V. Danese, P. G. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.
doi: 10.3934/dcds.2015.35.2881.![]() ![]() ![]() |
[17] |
M. Fabrizio, C. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.
doi: 10.1007/s00205-010-0300-3.![]() ![]() ![]() |
[18] |
M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.), pp.155–178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Boston, 2002.
![]() ![]() |
[19] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, 1988.
![]() ![]() |
[20] |
A. Haraux, Systèmes dynamiques dissipatifs et applications, MassonParis, 1991.
![]() ![]() |
[21] |
J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377-404.
![]() |
[22] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. 4 (C.M. Dafermos and M. Pokorny, Eds.), Elsevier, Amsterdam, 2008.
doi: 10.1016/S1874-5717(08)00003-0.![]() ![]() ![]() |
[23] |
V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.
doi: 10.1007/s00032-009-0098-3.![]() ![]() ![]() |
[24] |
V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.
![]() ![]() |
[25] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
doi: 10.1007/978-1-4684-0313-8.![]() ![]() ![]() |
[26] |
X. Wang, L. Yang and C. Zhong, Attractors for the nonclassical diffusion equation with fading memory, J. Math. Anal. Appl., 362 (2010), 327-337.
doi: 10.1016/j.jmaa.2009.09.029.![]() ![]() ![]() |
[27] |
X. Wang and C. Zhong, Attractors for the non-autonomous nonclassical diffusion equation with fading memory, Nonlinear Anal., 71 (2009), 5733-5746.
doi: 10.1016/j.na.2009.05.001.![]() ![]() ![]() |