April  2020, 19(4): 2147-2195. doi: 10.3934/cpaa.2020095

PDE problems with concentrating terms near the boundary

1. 

Grupo de Dinámica No Lineal, Universidad Pontificia Comillas de Madrid, C/ Alberto Aguilera 23, 28015 Madrid, Spain

2. 

Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid. 28040 Madrid, Spain

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM

*Corresponding author

Dedicated to Professor Tom´as Caraballo on occasion of his Sixtieth Birthday

Received  May 2019 Revised  September 2019 Published  January 2020

Fund Project: Partially supported by Project MTM2016-75465, MINECO, Spain and FIS2016-78883-C2-2-P(AEI/FEDER, U.E.). Partially supported by Severo Ochoa project SEV-2015-0554 (MINECO).

In this paper we study several PDE problems where certain linear or nonlinear termsin the equation concentrate in the domain, typically (but not exclusively) near the boundary. We analyze some linear and nonlinear elliptic models, linear and nonlinear parabolic ones as well as some damped wave equations. We show that in all these singularly perturbed problems, the concentrating terms give rise in the limit to a modification in the original boundary condition of the problem. Hence we describe in each case which is the singular limit problem and analyze the convergence of solutions.

Citation: Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. PDE problems with concentrating terms near the boundary. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2147-2195. doi: 10.3934/cpaa.2020095
References:
[1]

R. Adams, Sobolev Spaces, Academic Press, Boston, 1978.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in, Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

G. S. Aragão and F. D. M. Bezerra, Upper semicontinuity of the pullback attractors of non-autonomous damped wave equations with terms concentrating on the boundary, J. Math. Anal. Appl., 462 (2018), 871-899.  doi: 10.1016/j.jmaa.2017.12.047.  Google Scholar

[4]

G. S. Aragão and S. M. Bruschi, Concentrated terms and varying domains in elliptic equations: Lipschitz case, Math. Methods Appl. Sci., 39 (2016), 3450-3460.  doi: 10.1002/mma.3791.  Google Scholar

[5]

G. S. AragãoA. L. Pereira and M. Pereira, Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differential Equations, 26 (2014), 871-888.  doi: 10.1007/s10884-014-9412-z.  Google Scholar

[6]

G. S. Aragão and S. M. Oliva, Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary, J. Differential Equations, 253 (2012), 2573-2592.  doi: 10.1016/j.jde.2012.07.008.  Google Scholar

[7]

G. S. AragãoA. L. Pereira and M. Pereira, A nonlinear elliptic problem with terms concentrating in the boundary, Math. Methods Appl. Sci., 35 (2012), 1110-1116.  doi: 10.1002/mma.2525.  Google Scholar

[8]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations, 156 (1999), 376-406.  doi: 10.1006/jdeq.1998.3612.  Google Scholar

[9]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Attractors of parabolic problems with critical nonlinearities, uniform bounds, Comm. P. D. E.'s, 25 (2000), 1-37.  doi: 10.1080/03605300008821506.  Google Scholar

[10]

J. M. Arrieta and A. Jiménez-Casas, A. Rodríguez-Bernal, Nonhomogeneous flux condition as limit of concentrated reactions, Revista Iberoamericana de Matematicas, 24 (2008), 183–211. Google Scholar

[11]

J. M. Arrieta, A. Nogueira and M. C. Pereira, Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary, Discrete and Continuous Dynamical Systems, to appear.  Google Scholar

[12]

J. M. ArrietaA. Rodríguez–Bernal and J. Rossi, The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary, Proceedings of The Royal Society of Edinburgh, 138A (2008), 223-237.  doi: 10.1017/S0308210506000813.  Google Scholar

[13]

J. M. Arrieta and E. Santamaría, Distance of attractors of reaction-diffusion equations in thin domains, Journal of Differential Equations, 263 (2017), 5459-5506.  doi: 10.1016/j.jde.2017.06.023.  Google Scholar

[14]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. American Math. Soc., 63 (1977), 370-373.  doi: 10.2307/2041821.  Google Scholar

[15]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[16]

C. CavaterraC. GalM. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[17]

G. A. ChechkinD. CioranescuA. Damlamian and A. L. Piatnitski, On boundary value problem with singular inhomogeneity concentrated on the boundary, J. Math. Pures Appl., 98 (2012), 115-138.  doi: 10.1016/j.matpur.2011.11.002.  Google Scholar

[18]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for monotone semigroups with applications to evolutionary equations, Journal of Differential Equations, 249 (2010), 485-525.  doi: 10.1016/j.jde.2010.04.006.  Google Scholar

[19]

P. CornilleauJ. P. Loheác and A. Osses, Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers, J. of Dynamical and Control Systems, 16 (2010), 163-188.  doi: 10.1007/s10883-010-9088-6.  Google Scholar

[20]

J. Escher, Nonlinear elliptic systems with dynamic boundary conditions, Math. Z., 210 (1992), 413-439.  doi: 10.1007/BF02571805.  Google Scholar

[21]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[22]

J. Fernández Bonder, E. Lami Dozo and J. D. Rossi, Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 21 (2004), 795–805. doi: 10.1016/j.anihpc.2003.09.005.  Google Scholar

[23]

J. Fernández Bonder and J. D. Rossi, On the existence of extremals for the Sobolev trace embedding theorem with critical exponent, Bull. London Math. Soc., 37 (2005), 119-125.  doi: 10.1112/S0024609304003819.  Google Scholar

[24]

C. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[25]

G. GilardiA. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[26]

M. GrasselliA. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[27]

M. Grobbelaar-van Dalsen and N. Sauer, Solutions in Lebesgue spaces of the Navier-Stokes equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 123 (1993), 745-761.  doi: 10.1017/S0308210500030948.  Google Scholar

[28]

Y. D. GolovatyD. GómezM. Lobo and E. Pérez, On vibrating membranes with very heavy thin inclusions, Math. Models Methods Appl. Sci., 14 (2004), 987-1034.  doi: 10.1142/S0218202504003520.  Google Scholar

[29]

D. GómezM. LoboS. A. Nazarov and E. Pérez, Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl., 85 (2006), 598-632.  doi: 10.1016/j.matpur.2005.10.013.  Google Scholar

[30]

J. K. Hale, Asymptotic Behavior of Dissipative System, 1988.  Google Scholar

[31]

J. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.  Google Scholar

[32]

S. JaffardM. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation, J. of Differential Equations, 145 (1998), 184-215.  doi: 10.1006/jdeq.1997.3385.  Google Scholar

[33]

A. Jiménez–Casas and A. Rodríguez-Bernal, Asymptotic behaviour of a parabolic problem with terms concentrated in the boundary, Nonlinear Analysis T. M. A., 71 (2009), 2377-2383.  doi: 10.1016/j.na.2009.05.036.  Google Scholar

[34]

A. Jiménez-Casas and A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. and Appl., 379 (2011), 567-588.  doi: 10.1016/j.jmaa.2011.01.051.  Google Scholar

[35]

A. Jiménez-Casas and A. Rodríguez-Bernal, Dynamic boundary conditions as a singular limit of parabolic problems with terms concentrating at the boundary, Dynamics of Partial Differential Equations, 9 (2012), 341-368.  doi: 10.4310/DPDE.2012.v9.n4.a3.  Google Scholar

[36]

A. Jiménez-Casas and A. Rodríguez-Bernal, Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary, Discrete and Continuous Dynamical Systems, 39 (2019). doi: 10.3934/dcds.2019208.  Google Scholar

[37]

T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[38]

B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discr. Cont. Dyn. Systems, 6 (2000), 683-690.  doi: 10.3934/dcds.2000.6.683.  Google Scholar

[39]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33–55.  Google Scholar

[40]

J. Lagnese, Note on the boundary stabilization of wave equations, SIAM J. Control Optim., 26 (1988), 1250-1256.  doi: 10.1137/0326068.  Google Scholar

[41]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Appl. Math., vol. 10, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[42]

P. D. Lamberti, Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems, Complex Var. Elliptic Equ., 59 (2014), 309-323.  doi: 10.1080/17476933.2011.557155.  Google Scholar

[43]

E. Lami Dozo and O. Torne, Symmetry and symmetry breaking for minimizers in the trace inequality, Comm. Contemp. Math., 7 (2005), 727-746.  doi: 10.1142/S0219199705001921.  Google Scholar

[44]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, vol. 1 and 2, Cambridge University Press, 2000.  Google Scholar

[45]

Y. Li and M. Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., 50 (1997), 449-487.  doi: 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.3.CO;2-5.  Google Scholar

[46]

J. L. Lions, Quelques Méthodes de Rèsolution des Problèmes aux Limites non Lineaires, Dunod, 1969.  Google Scholar

[47]

J. L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, RMA 8, 1988.  Google Scholar

[48]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[49]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[50]

M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. of Differential Equations, 148 (1998), 388-406.  doi: 10.1006/jdeq.1998.3468.  Google Scholar

[51]

O. A. Oleinik, J. Sanchez-Hubert and G. A. Yosifian, On the vibration of membranes with concentrated masses, Bull. Sci. Math., 15 (1991), 1–27.  Google Scholar

[52]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[53]

M. C. Pereira, Remarks on semilinear parabolic systems with terms concentrating in the boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1921-1930.  doi: 10.1016/j.nonrwa.2013.01.003.  Google Scholar

[54]

C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations, 26 (2001), 2189-2210.  doi: 10.1081/PDE-100107818.  Google Scholar

[55]

A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense, 25 (2012), 165-197.  doi: 10.1007/s13163-011-0064-9.  Google Scholar

[56]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for nonlinear parabolic equations in bounded domains and applications, J. of Differential Equations, 244 (2008), 2983-3030.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

[57]

A. Rodríguez-Bernal and E. Zuazua, Parabolic singular limit of a wave equation with localized boundary damping, Dis. Cont. Dyn. Sys., 1 (1995), 303-346.  doi: 10.3934/dcds.1995.1.303.  Google Scholar

[58]

A. Rodríguez-Bernal and E. Zuazua, Parabolic singular limit of a wave equation with localized interior damping, Comm. Contem. Math., 3 (2001), 215-257.  doi: 10.1142/S0219199701000330.  Google Scholar

[59]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[60]

G. Savaré and A. Visintin, Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 49–89.  Google Scholar

[61]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathemathical Sciences, 143, Springer-Verlag, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[62]

M. W. Steklov, Sur les problèmes fondamentaux en physique mathématique, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490.  Google Scholar

[63]

M. A. StortiN. M. NigroR. Paz and L. Dalcin, Dynamic boundary conditions in computational fluid dynamics, Comput. Methods Appl. Mech. Engrg., 197 (2008), 1219-1232.  doi: 10.1016/j.cma.2007.10.014.  Google Scholar

[64]

H. Tribel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978.  Google Scholar

[65]

A. Toyohiko, Two-phase Stefan problems with dynamic boundary conditions, Adv. Math. Sci. Appl., 2 (1993), 253–270.  Google Scholar

[66]

Ti-Jun Xiao and Jin Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787–4809. doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar

[67]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces, Academic Press, Boston, 1978.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in, Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

G. S. Aragão and F. D. M. Bezerra, Upper semicontinuity of the pullback attractors of non-autonomous damped wave equations with terms concentrating on the boundary, J. Math. Anal. Appl., 462 (2018), 871-899.  doi: 10.1016/j.jmaa.2017.12.047.  Google Scholar

[4]

G. S. Aragão and S. M. Bruschi, Concentrated terms and varying domains in elliptic equations: Lipschitz case, Math. Methods Appl. Sci., 39 (2016), 3450-3460.  doi: 10.1002/mma.3791.  Google Scholar

[5]

G. S. AragãoA. L. Pereira and M. Pereira, Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differential Equations, 26 (2014), 871-888.  doi: 10.1007/s10884-014-9412-z.  Google Scholar

[6]

G. S. Aragão and S. M. Oliva, Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary, J. Differential Equations, 253 (2012), 2573-2592.  doi: 10.1016/j.jde.2012.07.008.  Google Scholar

[7]

G. S. AragãoA. L. Pereira and M. Pereira, A nonlinear elliptic problem with terms concentrating in the boundary, Math. Methods Appl. Sci., 35 (2012), 1110-1116.  doi: 10.1002/mma.2525.  Google Scholar

[8]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations, 156 (1999), 376-406.  doi: 10.1006/jdeq.1998.3612.  Google Scholar

[9]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Attractors of parabolic problems with critical nonlinearities, uniform bounds, Comm. P. D. E.'s, 25 (2000), 1-37.  doi: 10.1080/03605300008821506.  Google Scholar

[10]

J. M. Arrieta and A. Jiménez-Casas, A. Rodríguez-Bernal, Nonhomogeneous flux condition as limit of concentrated reactions, Revista Iberoamericana de Matematicas, 24 (2008), 183–211. Google Scholar

[11]

J. M. Arrieta, A. Nogueira and M. C. Pereira, Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary, Discrete and Continuous Dynamical Systems, to appear.  Google Scholar

[12]

J. M. ArrietaA. Rodríguez–Bernal and J. Rossi, The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary, Proceedings of The Royal Society of Edinburgh, 138A (2008), 223-237.  doi: 10.1017/S0308210506000813.  Google Scholar

[13]

J. M. Arrieta and E. Santamaría, Distance of attractors of reaction-diffusion equations in thin domains, Journal of Differential Equations, 263 (2017), 5459-5506.  doi: 10.1016/j.jde.2017.06.023.  Google Scholar

[14]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. American Math. Soc., 63 (1977), 370-373.  doi: 10.2307/2041821.  Google Scholar

[15]

C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar

[16]

C. CavaterraC. GalM. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[17]

G. A. ChechkinD. CioranescuA. Damlamian and A. L. Piatnitski, On boundary value problem with singular inhomogeneity concentrated on the boundary, J. Math. Pures Appl., 98 (2012), 115-138.  doi: 10.1016/j.matpur.2011.11.002.  Google Scholar

[18]

J. W. Cholewa and A. Rodríguez-Bernal, Extremal equilibria for monotone semigroups with applications to evolutionary equations, Journal of Differential Equations, 249 (2010), 485-525.  doi: 10.1016/j.jde.2010.04.006.  Google Scholar

[19]

P. CornilleauJ. P. Loheác and A. Osses, Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers, J. of Dynamical and Control Systems, 16 (2010), 163-188.  doi: 10.1007/s10883-010-9088-6.  Google Scholar

[20]

J. Escher, Nonlinear elliptic systems with dynamic boundary conditions, Math. Z., 210 (1992), 413-439.  doi: 10.1007/BF02571805.  Google Scholar

[21]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[22]

J. Fernández Bonder, E. Lami Dozo and J. D. Rossi, Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 21 (2004), 795–805. doi: 10.1016/j.anihpc.2003.09.005.  Google Scholar

[23]

J. Fernández Bonder and J. D. Rossi, On the existence of extremals for the Sobolev trace embedding theorem with critical exponent, Bull. London Math. Soc., 37 (2005), 119-125.  doi: 10.1112/S0024609304003819.  Google Scholar

[24]

C. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.  Google Scholar

[25]

G. GilardiA. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.  doi: 10.3934/cpaa.2009.8.881.  Google Scholar

[26]

M. GrasselliA. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[27]

M. Grobbelaar-van Dalsen and N. Sauer, Solutions in Lebesgue spaces of the Navier-Stokes equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 123 (1993), 745-761.  doi: 10.1017/S0308210500030948.  Google Scholar

[28]

Y. D. GolovatyD. GómezM. Lobo and E. Pérez, On vibrating membranes with very heavy thin inclusions, Math. Models Methods Appl. Sci., 14 (2004), 987-1034.  doi: 10.1142/S0218202504003520.  Google Scholar

[29]

D. GómezM. LoboS. A. Nazarov and E. Pérez, Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl., 85 (2006), 598-632.  doi: 10.1016/j.matpur.2005.10.013.  Google Scholar

[30]

J. K. Hale, Asymptotic Behavior of Dissipative System, 1988.  Google Scholar

[31]

J. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.  doi: 10.1007/BF01790353.  Google Scholar

[32]

S. JaffardM. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation, J. of Differential Equations, 145 (1998), 184-215.  doi: 10.1006/jdeq.1997.3385.  Google Scholar

[33]

A. Jiménez–Casas and A. Rodríguez-Bernal, Asymptotic behaviour of a parabolic problem with terms concentrated in the boundary, Nonlinear Analysis T. M. A., 71 (2009), 2377-2383.  doi: 10.1016/j.na.2009.05.036.  Google Scholar

[34]

A. Jiménez-Casas and A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. and Appl., 379 (2011), 567-588.  doi: 10.1016/j.jmaa.2011.01.051.  Google Scholar

[35]

A. Jiménez-Casas and A. Rodríguez-Bernal, Dynamic boundary conditions as a singular limit of parabolic problems with terms concentrating at the boundary, Dynamics of Partial Differential Equations, 9 (2012), 341-368.  doi: 10.4310/DPDE.2012.v9.n4.a3.  Google Scholar

[36]

A. Jiménez-Casas and A. Rodríguez-Bernal, Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary, Discrete and Continuous Dynamical Systems, 39 (2019). doi: 10.3934/dcds.2019208.  Google Scholar

[37]

T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[38]

B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discr. Cont. Dyn. Systems, 6 (2000), 683-690.  doi: 10.3934/dcds.2000.6.683.  Google Scholar

[39]

V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33–55.  Google Scholar

[40]

J. Lagnese, Note on the boundary stabilization of wave equations, SIAM J. Control Optim., 26 (1988), 1250-1256.  doi: 10.1137/0326068.  Google Scholar

[41]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Appl. Math., vol. 10, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[42]

P. D. Lamberti, Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems, Complex Var. Elliptic Equ., 59 (2014), 309-323.  doi: 10.1080/17476933.2011.557155.  Google Scholar

[43]

E. Lami Dozo and O. Torne, Symmetry and symmetry breaking for minimizers in the trace inequality, Comm. Contemp. Math., 7 (2005), 727-746.  doi: 10.1142/S0219199705001921.  Google Scholar

[44]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, vol. 1 and 2, Cambridge University Press, 2000.  Google Scholar

[45]

Y. Li and M. Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., 50 (1997), 449-487.  doi: 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.3.CO;2-5.  Google Scholar

[46]

J. L. Lions, Quelques Méthodes de Rèsolution des Problèmes aux Limites non Lineaires, Dunod, 1969.  Google Scholar

[47]

J. L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, RMA 8, 1988.  Google Scholar

[48]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[49]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[50]

M. Nakao, Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation, J. of Differential Equations, 148 (1998), 388-406.  doi: 10.1006/jdeq.1998.3468.  Google Scholar

[51]

O. A. Oleinik, J. Sanchez-Hubert and G. A. Yosifian, On the vibration of membranes with concentrated masses, Bull. Sci. Math., 15 (1991), 1–27.  Google Scholar

[52]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[53]

M. C. Pereira, Remarks on semilinear parabolic systems with terms concentrating in the boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1921-1930.  doi: 10.1016/j.nonrwa.2013.01.003.  Google Scholar

[54]

C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations, 26 (2001), 2189-2210.  doi: 10.1081/PDE-100107818.  Google Scholar

[55]

A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense, 25 (2012), 165-197.  doi: 10.1007/s13163-011-0064-9.  Google Scholar

[56]

A. Rodríguez-Bernal and A. Vidal-López, Extremal equilibria for nonlinear parabolic equations in bounded domains and applications, J. of Differential Equations, 244 (2008), 2983-3030.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

[57]

A. Rodríguez-Bernal and E. Zuazua, Parabolic singular limit of a wave equation with localized boundary damping, Dis. Cont. Dyn. Sys., 1 (1995), 303-346.  doi: 10.3934/dcds.1995.1.303.  Google Scholar

[58]

A. Rodríguez-Bernal and E. Zuazua, Parabolic singular limit of a wave equation with localized interior damping, Comm. Contem. Math., 3 (2001), 215-257.  doi: 10.1142/S0219199701000330.  Google Scholar

[59]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[60]

G. Savaré and A. Visintin, Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 49–89.  Google Scholar

[61]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathemathical Sciences, 143, Springer-Verlag, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[62]

M. W. Steklov, Sur les problèmes fondamentaux en physique mathématique, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490.  Google Scholar

[63]

M. A. StortiN. M. NigroR. Paz and L. Dalcin, Dynamic boundary conditions in computational fluid dynamics, Comput. Methods Appl. Mech. Engrg., 197 (2008), 1219-1232.  doi: 10.1016/j.cma.2007.10.014.  Google Scholar

[64]

H. Tribel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978.  Google Scholar

[65]

A. Toyohiko, Two-phase Stefan problems with dynamic boundary conditions, Adv. Math. Sci. Appl., 2 (1993), 253–270.  Google Scholar

[66]

Ti-Jun Xiao and Jin Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787–4809. doi: 10.1090/S0002-9947-04-03704-3.  Google Scholar

[67]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

Figure 1.  The set ωε
[1]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5125-5147. doi: 10.3934/dcds.2019208

[2]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[3]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[5]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020353

[6]

Igor Kossowski, Katarzyna Szymańska-Dębowska. Solutions to resonant boundary value problem with boundary conditions involving Riemann-Stieltjes integrals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 275-281. doi: 10.3934/dcdsb.2018019

[7]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[8]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[9]

L. Ke. Boundary behaviors for solutions of singular elliptic equations. Conference Publications, 1998, 1998 (Special) : 388-396. doi: 10.3934/proc.1998.1998.388

[10]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[11]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[12]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[13]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[14]

Marcos L. M. Carvalho, Edcarlos D. Silva, Claudiney Goulart, Carlos A. Santos. Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4401-4432. doi: 10.3934/cpaa.2020201

[15]

Lei Wei, Xiyou Cheng, Zhaosheng Feng. Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7169-7189. doi: 10.3934/dcds.2016112

[16]

José M. Arrieta, Ariadne Nogueira, Marcone C. Pereira. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4217-4246. doi: 10.3934/dcdsb.2019079

[17]

Dirk Aeyels, Filip De Smet, Bavo Langerock. Area contraction in the presence of first integrals and almost global convergence. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 135-157. doi: 10.3934/dcds.2007.18.135

[18]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[19]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[20]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (79)
  • HTML views (121)
  • Cited by (0)

[Back to Top]