\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations

  •  

      

Dedicated to Professor Tomás Caraballo on occasion of his Sixtieth Birthday

The first author is supported by the NCN grant Maestro 2013/08/A/ST1/00275 and the last two authors are partly supported by MICIIN/FEDER under project RTI2018-096523-B-100 and EU Marie-Skłodowska-Curie ITN Critical Transitions in Complex Systems (H2020-MSCA-ITN-2014 643073 CRITICS)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Linear skew-product semidynamical systems generated by random systems of delay differential equations are considered, both on a space of continuous functions as well as on a space of $ p $-summable functions. The main result states that in both cases, the Lyapunov exponents are identical, and that the Oseledets decompositions are related by natural embeddings.

    Mathematics Subject Classification: Primary: 37H15, 37L55, 34K06.Secondary: 37A30, 60H25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, third edition, Springer, Berlin, 2006. doi: 10.1007/3-540-29587-9.
    [2] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.
    [3] J. A. CalzadaR. Obaya and A. M. Sanz, Continuous separation for monotone skew-product semiflows: From theoretical to numerical results, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 915-944.  doi: 10.3934/dcdsb.2015.20.915.
    [4] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
    [5] M. C. Delfour and S. K. Mitter, Hereditary differential systems with constant delays. Ⅱ. A class of affine systems and the adjoint problem, J. Differential Equations, 18 (1975), 18-28.  doi: 10.1016/0022-0396(75)90078-9.
    [6] J. Diestel and J. J. Uhl, Jr., Vector Measures, with a foreword by B. J. Pettis, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. doi: 10.1090/surv/015.
    [7] T. S. Doan, Lyapunov Exponents for Random Dynamical Systems, Ph.D. dissertation, Technische Universität Dresden, 2009.
    [8] G. Froyland, S. Lloyd and A. Quas, A semi-invertible Oseledets theorem with applications to transfer operator cocycles, Discrete Contin. Dyn. Syst., 33 (2013), 3835–3860. doi: 10.3934/dcds.2013.33.3835.
    [9] C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory Dynam. Systems, 34 (2014), 1230-1272.  doi: 10.1017/etds.2012.189.
    [10] C. González-Tokman and A. Quas, A concise proof of the multiplicative ergodic theorem on Banach spaces, J. Modern Dynam., 9 (2015), 237-255.  doi: 10.3934/jmd.2015.9.237.
    [11] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence, R. I., 1957.
    [12] Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems on a Banach space, Mem. Amer. Math. Soc., 206 (2010). doi: 10.1090/S0065-9266-10-00574-0.
    [13] J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. Ⅰ. General theory, Trans. Amer. Math. Soc., 365 (2013), 5329-5365.  doi: 10.1090/S0002-9947-2013-05814-X.
    [14] J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. Ⅲ. Parabolic equations and delay systems, J. Dynam. Differential Equations, 28 (2016), 1039-1079.  doi: 10.1007/s10884-015-9436-z.
    [15] J. MierczyńskiS. Novo and R. Obaya, Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations, Discrete Contin. Dyn. Syst., 38 (2018), 6163-6193.  doi: 10.3934/dcds.2018265.
  • 加载中
SHARE

Article Metrics

HTML views(1794) PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return