• Previous Article
    Sigmoidal approximations of a delay neural lattice model with Heaviside functions
  • CPAA Home
  • This Issue
  • Next Article
    Convergence of nonautonomous multivalued problems with large diffusion to ordinary differential inclusions
April  2020, 19(4): 2369-2384. doi: 10.3934/cpaa.2020103

Large deviations for neutral stochastic functional differential equations

Department of Mathematics, Swansea University, Bay Campus, SA1 8EN, UK

*Corresponding author

Dedicated to Professor Tomás Caraballo on occasion of his 60th Birthday

Received  March 2019 Revised  June 2019 Published  January 2020

In this paper, under a one-sided Lipschitz condition on the drift coefficient we adopt (via contraction principle) an exponential approximation argument to investigate large deviations for neutral stochastic functional differential equations.

Citation: Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103
References:
[1]

J. Bao, G. Yin and C. Yuan, Asymptotic Analysis for Functional Stochastic Differential Equations, Springer, Cham, 2016. doi: 10.1007/978-3-319-46979-9.  Google Scholar

[2]

J. Bao and C. Yuan, Large deviations for neutral functional SDEs with jumps, Stochastic, 87 (2015), 48-70.  doi: 10.1080/17442508.2014.914516.  Google Scholar

[3]

Li. Bo and T. Zhang, Large deviations for perturbed reflected diffusion processes, Stochastics, 81 (2009), 531-543.  doi: 10.1080/17442500801981084.  Google Scholar

[4]

A. BudhirajaJ. Chen and P. Dupuis, Large deviations for stochastic partial differential equations driven by Poisson random measure, Stochastic Process. Appl., 123 (2013), 523-560.  doi: 10.1016/j.spa.2012.09.010.  Google Scholar

[5]

A. BudhirajaP. Dupuis and M. Fischer, Large deviation properties of weakly interacting processes via weak convergence methods, Ann. Probab., 40 (2012), 74-102.  doi: 10.1214/10-AOP616.  Google Scholar

[6]

A. BudhirajaP. Dupuis and A. Ganguly, Large deviations for small noise diffusions in a fast Markovian environment, Election. J. Probab., 23 (2018), 1-33.  doi: 10.1214/18-EJP228.  Google Scholar

[7]

A. Budhiraja and P. Nyquist, Large deviations for multidimensional state-dependent shot-noise processes, J. Appl. Probab., 52 (2015), 1097-1114.  doi: 10.1239/jap/1450802755.  Google Scholar

[8]

A. Dembo and A. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin Heidelberg, 1998. doi: 10.1007/978-1-4612-5320-4.  Google Scholar

[9]

M. Freidlin, Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Amer. Math. Soc., 305 (1988), 665-697.  doi: 10.2307/2000884.  Google Scholar

[10]

S. Gadat, F. Panloup and C. Pellegrini, Large deviation principle for invariant distributions of memory gradient diffusions, Electron. J. Probab., 18 (2013), 34pp. doi: 10.1214/EJP.v18-2031.  Google Scholar

[11]

G. HuangM. Mandjes and P. Spreij, Large deviations for Markov-modulated diffusion processes with rapid switching, Stochastic Process. Appl., 126 (2016), 1785-1818.  doi: 10.1016/j.spa.2015.12.005.  Google Scholar

[12]

R. S. Liptser and A. A. Pukhalskii, Limit theorems on large deviations for semimartingales, Stochastics Stochastics Rep., 38 (1992), 201-249.  doi: 10.1080/17442509208833757.  Google Scholar

[13]

K. Liu and T. Zhang, A large deviation principle of retarded Ornstein-Uhlenbeck processes driven by Levy noise, Stoch. Anal. Appl., 32 (2014), 889-910.  doi: 10.1080/07362994.2014.939544.  Google Scholar

[14]

X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[15]

C. Mo and J. Luo, Large deviations for stochastic differential delay equations, Nonlinear Anal., 80 (2013), 202-210.  doi: 10.1016/j.na.2012.10.004.  Google Scholar

[16]

S. A. Mohammed and T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 66 (2006), 881–893. doi: 10.3934/dcdsb.2006.6.881.  Google Scholar

[17]

M. Röckner and T. Zhang, Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26 (2007), 255-279.  doi: 10.1007/s11118-006-9035-z.  Google Scholar

[18]

D.W. Stroock, An Introduction to the Theory of Large Deviations, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-1-4613-8514-1.  Google Scholar

[19]

Y. SuoJ. Tao and W. Zhang, Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth, Front. Math. China, 13 (2018), 913-933.  doi: 10.1007/s11464-018-0710-3.  Google Scholar

show all references

References:
[1]

J. Bao, G. Yin and C. Yuan, Asymptotic Analysis for Functional Stochastic Differential Equations, Springer, Cham, 2016. doi: 10.1007/978-3-319-46979-9.  Google Scholar

[2]

J. Bao and C. Yuan, Large deviations for neutral functional SDEs with jumps, Stochastic, 87 (2015), 48-70.  doi: 10.1080/17442508.2014.914516.  Google Scholar

[3]

Li. Bo and T. Zhang, Large deviations for perturbed reflected diffusion processes, Stochastics, 81 (2009), 531-543.  doi: 10.1080/17442500801981084.  Google Scholar

[4]

A. BudhirajaJ. Chen and P. Dupuis, Large deviations for stochastic partial differential equations driven by Poisson random measure, Stochastic Process. Appl., 123 (2013), 523-560.  doi: 10.1016/j.spa.2012.09.010.  Google Scholar

[5]

A. BudhirajaP. Dupuis and M. Fischer, Large deviation properties of weakly interacting processes via weak convergence methods, Ann. Probab., 40 (2012), 74-102.  doi: 10.1214/10-AOP616.  Google Scholar

[6]

A. BudhirajaP. Dupuis and A. Ganguly, Large deviations for small noise diffusions in a fast Markovian environment, Election. J. Probab., 23 (2018), 1-33.  doi: 10.1214/18-EJP228.  Google Scholar

[7]

A. Budhiraja and P. Nyquist, Large deviations for multidimensional state-dependent shot-noise processes, J. Appl. Probab., 52 (2015), 1097-1114.  doi: 10.1239/jap/1450802755.  Google Scholar

[8]

A. Dembo and A. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin Heidelberg, 1998. doi: 10.1007/978-1-4612-5320-4.  Google Scholar

[9]

M. Freidlin, Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Amer. Math. Soc., 305 (1988), 665-697.  doi: 10.2307/2000884.  Google Scholar

[10]

S. Gadat, F. Panloup and C. Pellegrini, Large deviation principle for invariant distributions of memory gradient diffusions, Electron. J. Probab., 18 (2013), 34pp. doi: 10.1214/EJP.v18-2031.  Google Scholar

[11]

G. HuangM. Mandjes and P. Spreij, Large deviations for Markov-modulated diffusion processes with rapid switching, Stochastic Process. Appl., 126 (2016), 1785-1818.  doi: 10.1016/j.spa.2015.12.005.  Google Scholar

[12]

R. S. Liptser and A. A. Pukhalskii, Limit theorems on large deviations for semimartingales, Stochastics Stochastics Rep., 38 (1992), 201-249.  doi: 10.1080/17442509208833757.  Google Scholar

[13]

K. Liu and T. Zhang, A large deviation principle of retarded Ornstein-Uhlenbeck processes driven by Levy noise, Stoch. Anal. Appl., 32 (2014), 889-910.  doi: 10.1080/07362994.2014.939544.  Google Scholar

[14]

X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[15]

C. Mo and J. Luo, Large deviations for stochastic differential delay equations, Nonlinear Anal., 80 (2013), 202-210.  doi: 10.1016/j.na.2012.10.004.  Google Scholar

[16]

S. A. Mohammed and T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 66 (2006), 881–893. doi: 10.3934/dcdsb.2006.6.881.  Google Scholar

[17]

M. Röckner and T. Zhang, Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26 (2007), 255-279.  doi: 10.1007/s11118-006-9035-z.  Google Scholar

[18]

D.W. Stroock, An Introduction to the Theory of Large Deviations, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-1-4613-8514-1.  Google Scholar

[19]

Y. SuoJ. Tao and W. Zhang, Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth, Front. Math. China, 13 (2018), 913-933.  doi: 10.1007/s11464-018-0710-3.  Google Scholar

[1]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[2]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[3]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[4]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[5]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[6]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[7]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[8]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

[9]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[10]

Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845

[11]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[12]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[13]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[14]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[15]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[16]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[17]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[18]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[19]

Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1583-1606. doi: 10.3934/dcdsb.2019241

[20]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]