\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform a priori estimates for elliptic problems with impedance boundary conditions

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • We derive stability estimates in $ H^2 $ for elliptic problems with impedance boundary conditions that are uniform with respect to the impedance coefficient. Such estimates are of importance to establish sharp error estimates for finite element discretizations of contact impedance and high-frequency Helm-holtz problems. Though stability in $ H^2 $ is easily obtained by employing a ``bootstrap'' argument and well-established result for the corresponding Neumann problem, this strategy leads to a stability constant that increases with the impedance coefficient. Here, we propose alternative proofs to derive sharp and uniform stability constants for domains that are convex or smooth.

    Mathematics Subject Classification: Primary: 35J05; Secondary: 35B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Examples of domains with an obstacle satisfying Assumptions 1 and 2 with $ \Gamma_{{\rm{Diss}}} $ convex

    Figure 2.  Examples of domains with an obstacle satisfying Assumptions 1 and 2 with $ \Gamma_{{\rm{Diss}}} $ smooth

    Figure 3.  Examples of cavities satisfying Assumptions 1 and 2

    Figure 4.  Exceptional cavity satisfying Theorem 5.1

  • [1] G. AlessandriniA. Morassi and E. Rosset, The linear constraints in Poincaré and Korn type inequalities, Forum Math., 20 (2008), 557-569.  doi: 10.1515/FORUM.2008.028.
    [2] I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1970/1971), 322-333.  doi: 10.1007/BF02165003.
    [3] H. BarucqT. Chaumont-Frelet and C. Gout, Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation, Math. Comput., 86 (2017), 2129-2157.  doi: 10.1090/mcom/3165.
    [4] H. Brezis, Functional Analysis Sobolev Spaces and Partial Differential Equations, Springer, 2011.
    [5] T. Chaumont-Frelet and S. Nicaise, High-frequency behaviour of corner singularities in Helmholtz problems, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 52 (2018), 1803-1845.  doi: 10.1051/m2an/2018031.
    [6] M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem, Commun. Partial Differ. Equ., 21 (1996), 1919-1949.  doi: 10.1080/03605309608821249.
    [7] J. Dardé and S. Staboulis, Electrode modelling: the effect of contact impedance, ISO: ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 50 (2016), 415-431.  doi: 10.1051/m2an/2015049.
    [8] X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput., 80 (2011), 1997-2024.  doi: 10.1090/S0025-5718-2011-02475-0.
    [9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman, Boston–London–Melbourne, 1985.
    [10] N. Hyvönen, Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004), 902-931.  doi: 10.1137/S0036139903423303.
    [11] N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM J. Appl. Math., 77 (2017), 2250-2271.  doi: 10.1137/17M1124292.
    [12] H. C. KaiserH. Neidhardt and J. Rehberg, Macroscopic current induced boundary conditions for Schrödinger-type operators, Integr. Equ. Oper. Theory, 45 (2003), 39-63.  doi: 10.1007/BF02789593.
    [13] J. Kim and D. Sheen, A priori estimates for elliptic boundary value problems with nonlinear boundary conditions, preprint 1304, Univ. Minnesota, 1995.
    [14] J. Kim and D. Sheen, Regularity of solutions to Helmholtz-type problems with absorbing boundary conditions in nonsmooth domains, Bull. Korean Math. Soc., 34 (1997), 135-146. 
    [15] N. G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Ration. Mech. Anal., 68 (1978), 113-120.  doi: 10.1007/BF00281405.
    [16] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [17] R. TezaurI. Kalashnikova and C. Farhat, The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber, Comput. Meth. Appl. Mech. Eng., 268 (2013), 126-140.  doi: 10.1016/j.cma.2013.08.017.
    [18] W. L. WendlandE. Stephan and G. C. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Meth. Appl. Sci., 1 (1979), 265-321.  doi: 10.1002/mma.1670010302.
    [19] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. part Ⅰ: linear version, IMA J. Numer. Anal., 34 (2014), 1266-1288.  doi: 10.1093/imanum/drt033.
    [20] L. Zhu and H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. part Ⅱ: hp version, SIAM J. Numer. Anal., 51 (2013), 1828-1852.  doi: 10.1137/120874643.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1824) PDF downloads(275) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return