• Previous Article
    A stochastic threshold for an epidemic model with isolation and a non linear incidence
  • CPAA Home
  • This Issue
  • Next Article
    Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition
May  2020, 19(5): 2491-2512. doi: 10.3934/cpaa.2020109

Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China

2. 

School of Mathematics, South China University of Technology, Guangzhou 510640, China

* Corresponding author

Received  October 2018 Revised  September 2019 Published  March 2020

This paper considers the Cauchy problem for a nonlinear Klein-Gordon system with damping terms. In the existing works, the solution with low and critical initial energy was studied. We extend the previous results on following three aspects. Firstly, we consider the vacuum isolating phenomenon of solution under initial energy $ E(0)\leq0 $. We find that the corresponding vacuum region is an ball and it expands to whole phase space as $ E(0) $ decays to $ -\infty $. Secondly, we discuss the asymptotic behavior of blow-up solution and prove that the solution grows exponentially. The growth speed is estimated especially. Finally, the solution with arbitrary positive initial energy is studied. In this case, the initial conditions such that the solution exists globally and blows up in finite time are given, respectively.

Citation: Guangyu Xu, Chunlai Mu, Dan Li. Global existence and non-existence analyses to a nonlinear Klein-Gordon system with damping terms under positive initial energy. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2491-2512. doi: 10.3934/cpaa.2020109
References:
[1]

A. B. Aliev and A. A. Kazimov, The existence and nonexistence of global solutions of the Cauchy problem for Klein-Gordon systems, Dokl. Math., 90 (2014), 680-682.  doi: 10.1134/s1064562414070084.  Google Scholar

[2]

A. B. Aliev and A. A. Kazimov, Nonexistence of global solutions of the Cauchy problem for systems of Klein-Gordon equations with positive initial energy, Differ. Equ., 51 (2015), 1563-1568.  doi: 10.1134/S0012266115120034.  Google Scholar

[3]

A. B. Aliev and G. I. Yusifova, Nonexistecne of global solutions of Cauchy problem for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Differ. Equ., 211 (2017), 1-10.   Google Scholar

[4]

C. O. AlvesM. M. CavalcantiV. N. D. CavalcantiM. Rammaha and D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 583-608.  doi: 10.3934/dcdss.2009.2.583.  Google Scholar

[5]

M. AlimohammadyC. Cattani and M. K. Kalleji, Invariance and existence analysis for semilinear hyperbolic equations with damping and conical singularity, J. Math. Anal. Appl., 455 (2017), 569-591.  doi: 10.1016/j.jmaa.2017.05.057.  Google Scholar

[6]

J. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[7]

H. Chen and G. W. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[8]

D. Fang and R. Xue, Global existence of small solutions for cubic quasi-linear Klein-Gordon systems in one space dimension, Acta. Math. Sin. English Ser., 22 (2006), 1085-1102.  doi: 10.1007/s10114-005-0668-4.  Google Scholar

[9]

V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.  doi: 10.1007/BF02570764.  Google Scholar

[10]

Y. Q. Guo and M. A. Rammaha, Blow-up of solutions to systems of nonlinear wave equations with supercritical sources, Appl. Anal., 92 (2013), 1101-1115.  doi: 10.1080/00036811.2011.649734.  Google Scholar

[11]

F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34 (2010), 29-51.  doi: 10.1002/cpa.3160340103.  Google Scholar

[12]

Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differ. Equ., 251 (2011), 2549-2567.  doi: 10.1016/j.jde.2011.04.001.  Google Scholar

[13]

N. KutevN. Kolkovska and M. Dimova, Global existence of cauchy problem for Boussinesq paradigm equation, Comput. Math. Appl., 65 (2013), 500-511.  doi: 10.1016/j.camwa.2012.05.024.  Google Scholar

[14]

C. M. Li and E. S. Wright, Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics, Commun. Pure Appl. Anal., 1 (2017), 77-84.  doi: 10.3934/cpaa.2002.1.77.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $pu_tt = -au+f(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[16]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[17]

M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397-1415.  doi: 10.1016/S0362-546X(03)00192-5.  Google Scholar

[18]

M. R. Li and L. Y. Tsai, On a system of nonlinear wave equations, Taiwan. J. Math., 7 (2003), 557-573.  doi: 10.11650/twjm/1500407577.  Google Scholar

[19]

W. J. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms, Nonlinear Anal. Theory Methods Appl., 73 (2010), 244-255.  doi: 10.1016/j.na.2010.03.017.  Google Scholar

[20]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[21]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[22]

Y. C. Liu and R. Z. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[23]

Y. C. Liu and R. Z. Xu, Global existence and blow up of solutions for cauchy problem of generalized boussinesq equation, Physica D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[24]

Y. C. Liu and R. Z. Xu, Potential well method for cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169-1187.  doi: 10.1016/j.jmaa.2007.05.076.  Google Scholar

[25]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theory Methods Appl., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[26]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear Klein-Gordon equations, Funkc. Ekvacioj Ser. Int., 30 (1987), 147-161.   Google Scholar

[27]

V. G. Makhankov, Dynamics of classical solitons in non-integrable systems, Phys. Rep. Rev. Sec. Phys. Lett., 35 (1978), 1-128.  doi: 10.1016/0370-1573(78)90074-1.  Google Scholar

[28]

L. A. Medeiros and G. P. Menzala, On a mixed problem for a class of nonlinear Klein-Gordon equations, Acta Math. Hung., 52 (1988), 61-69.  doi: 10.1007/BF01952481.  Google Scholar

[29]

L. A. Medeiros and M. M. Miranda, Weak solutions for a system of nonlinear klein-gordon equations, Ann. Mat. Pura Appl., 146 (1986), 173-183.  doi: 10.1007/BF01762364.  Google Scholar

[30]

S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.  doi: 10.1016/j.jmaa.2009.10.050.  Google Scholar

[31]

M. Reed, Abstract Nonlinear Wave Equations, Springer, Berlin, 1976.  Google Scholar

[32]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 23 (2010), 79-92.   Google Scholar

[33]

B. Said-Houari, Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Z. Angew. Math. Phys., 62 (2011), 115-133.  doi: 10.1007/s00033-010-0082-3.  Google Scholar

[34]

B. Said-Houari, Global existence and decay of solutions of a nonlinear system of wave equations, Appl. Anal., 91 (2012), 475-489.  doi: 10.1080/00036811.2010.549475.  Google Scholar

[35]

H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differ. Equ., 192 (2003), 308-325.  doi: 10.1016/S0022-0396(03)00125-6.  Google Scholar

[36]

I. E. Segal, Nonlinear partial differential equations in quantum field theory, in Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I. (1965), 210–226.  Google Scholar

[37]

I. E. Segal, Non-linear semi-groups, Ann. Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[38]

S. B. Wang and X. Su, The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Anal. Real World Appl., 45 (2019), 116-141.  doi: 10.1016/j.nonrwa.2018.06.012.  Google Scholar

[39]

S. T. Wu, Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear klein-gordon equations with damping terms, Acta Appl. Math., 119 (2012), 75-95.  doi: 10.1007/s10440-011-9662-2.  Google Scholar

[40]

Y. J. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[41]

Y. J. Wang, Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy, IMA J. Appl. Math., 24 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[42]

G. Y. Xu, Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration, Taiwan. J. Math., 22 (2018), 1479-1508.  doi: 10.11650/tjm/180302.  Google Scholar

[43]

Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Appl. Math. Lett., 77 (2018), 21-26.  doi: 10.1016/j.aml.2017.09.014.  Google Scholar

[44]

J. Zhang, Stability fo standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/s000330050011.  Google Scholar

[45]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Theory Methods Appl., 48 (2002), 191-207.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[46]

J. Zhang, On the standing wave in coupled non-linear Klein-Gordon equations, Math. Meth. Appl. Sci., 26 (2003), 11-25.  doi: 10.1002/mma.340.  Google Scholar

[47]

R. ZengC. L. Mu and S. M. Zhou, A blow-up result for Kirchhoff-type equations with high energy, Math. Meth. Appl. Sci., 34 (2011), 479-486.  doi: 10.1002/mma.1374.  Google Scholar

show all references

References:
[1]

A. B. Aliev and A. A. Kazimov, The existence and nonexistence of global solutions of the Cauchy problem for Klein-Gordon systems, Dokl. Math., 90 (2014), 680-682.  doi: 10.1134/s1064562414070084.  Google Scholar

[2]

A. B. Aliev and A. A. Kazimov, Nonexistence of global solutions of the Cauchy problem for systems of Klein-Gordon equations with positive initial energy, Differ. Equ., 51 (2015), 1563-1568.  doi: 10.1134/S0012266115120034.  Google Scholar

[3]

A. B. Aliev and G. I. Yusifova, Nonexistecne of global solutions of Cauchy problem for systems of semilinear hyperbolic equations with positive initial energy, Electron. J. Differ. Equ., 211 (2017), 1-10.   Google Scholar

[4]

C. O. AlvesM. M. CavalcantiV. N. D. CavalcantiM. Rammaha and D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 583-608.  doi: 10.3934/dcdss.2009.2.583.  Google Scholar

[5]

M. AlimohammadyC. Cattani and M. K. Kalleji, Invariance and existence analysis for semilinear hyperbolic equations with damping and conical singularity, J. Math. Anal. Appl., 455 (2017), 569-591.  doi: 10.1016/j.jmaa.2017.05.057.  Google Scholar

[6]

J. DelortD. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.  doi: 10.1016/j.jfa.2004.01.008.  Google Scholar

[7]

H. Chen and G. W. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[8]

D. Fang and R. Xue, Global existence of small solutions for cubic quasi-linear Klein-Gordon systems in one space dimension, Acta. Math. Sin. English Ser., 22 (2006), 1085-1102.  doi: 10.1007/s10114-005-0668-4.  Google Scholar

[9]

V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.  doi: 10.1007/BF02570764.  Google Scholar

[10]

Y. Q. Guo and M. A. Rammaha, Blow-up of solutions to systems of nonlinear wave equations with supercritical sources, Appl. Anal., 92 (2013), 1101-1115.  doi: 10.1080/00036811.2011.649734.  Google Scholar

[11]

F. John, Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34 (2010), 29-51.  doi: 10.1002/cpa.3160340103.  Google Scholar

[12]

Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differ. Equ., 251 (2011), 2549-2567.  doi: 10.1016/j.jde.2011.04.001.  Google Scholar

[13]

N. KutevN. Kolkovska and M. Dimova, Global existence of cauchy problem for Boussinesq paradigm equation, Comput. Math. Appl., 65 (2013), 500-511.  doi: 10.1016/j.camwa.2012.05.024.  Google Scholar

[14]

C. M. Li and E. S. Wright, Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics, Commun. Pure Appl. Anal., 1 (2017), 77-84.  doi: 10.3934/cpaa.2002.1.77.  Google Scholar

[15]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $pu_tt = -au+f(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[16]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[17]

M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397-1415.  doi: 10.1016/S0362-546X(03)00192-5.  Google Scholar

[18]

M. R. Li and L. Y. Tsai, On a system of nonlinear wave equations, Taiwan. J. Math., 7 (2003), 557-573.  doi: 10.11650/twjm/1500407577.  Google Scholar

[19]

W. J. Liu, Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms, Nonlinear Anal. Theory Methods Appl., 73 (2010), 244-255.  doi: 10.1016/j.na.2010.03.017.  Google Scholar

[20]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[21]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[22]

Y. C. Liu and R. Z. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[23]

Y. C. Liu and R. Z. Xu, Global existence and blow up of solutions for cauchy problem of generalized boussinesq equation, Physica D, 237 (2008), 721-731.  doi: 10.1016/j.physd.2007.09.028.  Google Scholar

[24]

Y. C. Liu and R. Z. Xu, Potential well method for cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169-1187.  doi: 10.1016/j.jmaa.2007.05.076.  Google Scholar

[25]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theory Methods Appl., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[26]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear Klein-Gordon equations, Funkc. Ekvacioj Ser. Int., 30 (1987), 147-161.   Google Scholar

[27]

V. G. Makhankov, Dynamics of classical solitons in non-integrable systems, Phys. Rep. Rev. Sec. Phys. Lett., 35 (1978), 1-128.  doi: 10.1016/0370-1573(78)90074-1.  Google Scholar

[28]

L. A. Medeiros and G. P. Menzala, On a mixed problem for a class of nonlinear Klein-Gordon equations, Acta Math. Hung., 52 (1988), 61-69.  doi: 10.1007/BF01952481.  Google Scholar

[29]

L. A. Medeiros and M. M. Miranda, Weak solutions for a system of nonlinear klein-gordon equations, Ann. Mat. Pura Appl., 146 (1986), 173-183.  doi: 10.1007/BF01762364.  Google Scholar

[30]

S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.  doi: 10.1016/j.jmaa.2009.10.050.  Google Scholar

[31]

M. Reed, Abstract Nonlinear Wave Equations, Springer, Berlin, 1976.  Google Scholar

[32]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 23 (2010), 79-92.   Google Scholar

[33]

B. Said-Houari, Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, Z. Angew. Math. Phys., 62 (2011), 115-133.  doi: 10.1007/s00033-010-0082-3.  Google Scholar

[34]

B. Said-Houari, Global existence and decay of solutions of a nonlinear system of wave equations, Appl. Anal., 91 (2012), 475-489.  doi: 10.1080/00036811.2010.549475.  Google Scholar

[35]

H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass terms in one space dimension, J. Differ. Equ., 192 (2003), 308-325.  doi: 10.1016/S0022-0396(03)00125-6.  Google Scholar

[36]

I. E. Segal, Nonlinear partial differential equations in quantum field theory, in Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I. (1965), 210–226.  Google Scholar

[37]

I. E. Segal, Non-linear semi-groups, Ann. Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[38]

S. B. Wang and X. Su, The Cauchy problem for the dissipative Boussinesq equation, Nonlinear Anal. Real World Appl., 45 (2019), 116-141.  doi: 10.1016/j.nonrwa.2018.06.012.  Google Scholar

[39]

S. T. Wu, Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear klein-gordon equations with damping terms, Acta Appl. Math., 119 (2012), 75-95.  doi: 10.1007/s10440-011-9662-2.  Google Scholar

[40]

Y. J. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[41]

Y. J. Wang, Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy, IMA J. Appl. Math., 24 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[42]

G. Y. Xu, Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration, Taiwan. J. Math., 22 (2018), 1479-1508.  doi: 10.11650/tjm/180302.  Google Scholar

[43]

Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Appl. Math. Lett., 77 (2018), 21-26.  doi: 10.1016/j.aml.2017.09.014.  Google Scholar

[44]

J. Zhang, Stability fo standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/s000330050011.  Google Scholar

[45]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Theory Methods Appl., 48 (2002), 191-207.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[46]

J. Zhang, On the standing wave in coupled non-linear Klein-Gordon equations, Math. Meth. Appl. Sci., 26 (2003), 11-25.  doi: 10.1002/mma.340.  Google Scholar

[47]

R. ZengC. L. Mu and S. M. Zhou, A blow-up result for Kirchhoff-type equations with high energy, Math. Meth. Appl. Sci., 34 (2011), 479-486.  doi: 10.1002/mma.1374.  Google Scholar

[1]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[2]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[13]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[16]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[17]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[19]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[20]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (174)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]