• Previous Article
    Existence of weak solution for mean curvature flow with transport term and forcing term
  • CPAA Home
  • This Issue
  • Next Article
    Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle
May  2020, 19(5): 2641-2653. doi: 10.3934/cpaa.2020115

Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-2, India

* Corresponding author

Received  February 2019 Revised  September 2019 Published  March 2020

Fund Project: Research support from University Grant Commission, Government of India (Sr. No. 21215409 47, Ref No: 20=12=2015(ⅱ)EU-V) is gratefully acknowledged by the first author

We study the interactions between classical elementary waves and delta shock wave in quasilinear hyperbolic system of conservation laws. This governing system describes a thin film of a perfectly soluble anti-surfactant solution in the limit of large capillary and P$ \acute{e} $clet numbers. This system is one of the example of non-strictly hyperbolic system whose Riemann solution consists of delta shock wave as well as classical elementary waves such as shock waves, rarefaction waves and contact discontinuities. The global structure of the perturbed Riemann solutions are constructed and analyzed case by case when delta shock wave is involved.

Citation: Anupam Sen, T. Raja Sekhar. Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2641-2653. doi: 10.3934/cpaa.2020115
References:
[1]

C. H. Chang and E. I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms, Colloid Surf. A - Physicochem. Eng. Asp., 100 (1995), 1-45.   Google Scholar

[2]

G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar

[3]

G. Q. ChenM. Slemrod and D. Wang, Vanishing viscosity method for transonic flow, Arch. Ration. Mech. Anal., 189 (2008), 159-188.  doi: 10.1007/s00205-007-0101-5.  Google Scholar

[4]

J. J. A. Conn, Stability and Dynamics of Anti-surfactant Solutions, Ph.D Thesis, University of Strathclyde, Glasgow, 2017. Google Scholar

[5]

J. J. A. Conn, B. R. Duffy, D. Pritchard, S. K. Wilson, P. J. Halling and K. Sefiane, Fluid-dynamical model for antisurfactants, Phys. Rev. E, 93 (2016), 043121, 11. doi: 10.1103/PhysRevE.93.043121.  Google Scholar

[6]

J. J. A. ConnB. R. DuffyD. PritchardS. K. Wilson and K. Sefiane, Simple waves and shocks in a thin film of a perfectly soluble anti-surfactant solution, J. Eng. Math., 107 (2017), 167-178.  doi: 10.1007/s10665-017-9924-8.  Google Scholar

[7]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.  doi: 10.1007/BF00249087.  Google Scholar

[8]

V. G. Danilov and V. M. Shelkovich, Dynamics of Propagation and interaction of $\delta$-shock waves in conservation law systems, J. Differ. Equ., 211 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011.  Google Scholar

[9]

V. G. Danilov and V. M. Shelkovich, Delta-shock wave type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8.  Google Scholar

[10]

B. T. Hayes and P. G. LeFloch, Measure solutions to a strictly hyperbolic system of conservation laws, Nonlinearity, 9 (1996), 1547-1563.  doi: 10.1088/0951-7715/9/6/009.  Google Scholar

[11]

J. F. Hernández-Sánchez, A. Eddi and J. H. Snoeijer, Marangoni spreading due to a localized alcohol supply on a thin water film, Phys. Fluids, 27 (2015), 9. doi: 10.1063/1.4915283.  Google Scholar

[12]

S. D. HowisonJ. A. MoriartyJ. R. OckendonE. L. Terrill and S. K. Wilson, A mathematical model for drying paint layers, J. Eng. Math., 32 (1997), 377-394.  doi: 10.1023/A:1004224014291.  Google Scholar

[13]

K. T. Joseph, A Riemann problem whose viscosity solutions contain $\delta$-measures, Asymptotic Anal., 7 (1993), 105-120.   Google Scholar

[14]

H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014.  Google Scholar

[15]

H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2$\times$ 2 system of conservation laws, Proc. Edinb. Math. Soc., 55 (2012), 711-729.  doi: 10.1017/S0013091512000065.  Google Scholar

[16]

B. L. Keyfitz and H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ration. Mech. Anal., 72 (1980), 219-241.  doi: 10.1007/BF00281590.  Google Scholar

[17]

B. L. Keyfitz and H. C. Kranzer, Spaces of weighted measures for conservation laws with singular shock solutions, J. Differ. Equ., 118 (1995), 420-451.  doi: 10.1006/jdeq.1995.1080.  Google Scholar

[18]

Z. Li and B. C. Y. Lu, Surface tension of aqueous electrolyte solutions at high concentrations-representation and prediction, Chem. Eng. Sci., 56 (2001), 2879-2888.  doi: 10.1016/S0009-2509(00)00525-X.  Google Scholar

[19]

F. A. Long and G. C. Nutting, The relative surface tension of potassium chloride solutions by a differential bubble pressure method1, J. Amer. Chem. Soc., 64 (1942), 2476-2482.   Google Scholar

[20]

Mi nhajulT. Raja Sekhar and G. P. Raja Sekhar, Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution, Commun. Pure Appl. Anal., 18 (2019), 3367-3386.  doi: 10.3934/cpaa.2019152.  Google Scholar

[21]

M. Nedeljkov, Delta and singular delta locus for one-dimensional systems of conservation laws, Math. Meth. Appl. Sci., 27 (2004), 931-955.  doi: 10.1002/mma.480.  Google Scholar

[22]

A. Sen and T. Raja Sekhar, Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation, Commun. Pure Appl. Anal., 18 (2019), 931-942.  doi: 10.3934/cpaa.2019045.  Google Scholar

[23]

A. SenT. Raja Sekhar and V. D. Sharma, Wave interactions and stability of the Riemann solution for a strictly hyperbolic system of conservation laws, Q. Appl. Math., 75 (2017), 539-554.  doi: 10.1090/qam/1466.  Google Scholar

[24]

C. Shen, Delta shock wave solution for a symmetric Keyfitz-Kranzer system, Appl. Math. Lett., 77 (2018), 35-43.  doi: 10.1016/j.aml.2017.09.016.  Google Scholar

[25]

W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Am. Math. Soc., 654 (1999). doi: 10.1090/memo/0654.  Google Scholar

[26]

M. Sun, Interactions of delta shock waves for the chromatography equations, Appl. Math. Lett., 26 (2013), 631-637.  doi: 10.1016/j.aml.2013.01.002.  Google Scholar

[27]

D. TanT. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equ., 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093.  Google Scholar

[28]

B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.  doi: 10.2307/1999646.  Google Scholar

[29]

S. K. Wilson, The levelling of paint films, IMA J. Appl. Math., 50 (1993), 149-166.  doi: 10.1093/imamat/50.2.149.  Google Scholar

show all references

References:
[1]

C. H. Chang and E. I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms, Colloid Surf. A - Physicochem. Eng. Asp., 100 (1995), 1-45.   Google Scholar

[2]

G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar

[3]

G. Q. ChenM. Slemrod and D. Wang, Vanishing viscosity method for transonic flow, Arch. Ration. Mech. Anal., 189 (2008), 159-188.  doi: 10.1007/s00205-007-0101-5.  Google Scholar

[4]

J. J. A. Conn, Stability and Dynamics of Anti-surfactant Solutions, Ph.D Thesis, University of Strathclyde, Glasgow, 2017. Google Scholar

[5]

J. J. A. Conn, B. R. Duffy, D. Pritchard, S. K. Wilson, P. J. Halling and K. Sefiane, Fluid-dynamical model for antisurfactants, Phys. Rev. E, 93 (2016), 043121, 11. doi: 10.1103/PhysRevE.93.043121.  Google Scholar

[6]

J. J. A. ConnB. R. DuffyD. PritchardS. K. Wilson and K. Sefiane, Simple waves and shocks in a thin film of a perfectly soluble anti-surfactant solution, J. Eng. Math., 107 (2017), 167-178.  doi: 10.1007/s10665-017-9924-8.  Google Scholar

[7]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.  doi: 10.1007/BF00249087.  Google Scholar

[8]

V. G. Danilov and V. M. Shelkovich, Dynamics of Propagation and interaction of $\delta$-shock waves in conservation law systems, J. Differ. Equ., 211 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011.  Google Scholar

[9]

V. G. Danilov and V. M. Shelkovich, Delta-shock wave type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8.  Google Scholar

[10]

B. T. Hayes and P. G. LeFloch, Measure solutions to a strictly hyperbolic system of conservation laws, Nonlinearity, 9 (1996), 1547-1563.  doi: 10.1088/0951-7715/9/6/009.  Google Scholar

[11]

J. F. Hernández-Sánchez, A. Eddi and J. H. Snoeijer, Marangoni spreading due to a localized alcohol supply on a thin water film, Phys. Fluids, 27 (2015), 9. doi: 10.1063/1.4915283.  Google Scholar

[12]

S. D. HowisonJ. A. MoriartyJ. R. OckendonE. L. Terrill and S. K. Wilson, A mathematical model for drying paint layers, J. Eng. Math., 32 (1997), 377-394.  doi: 10.1023/A:1004224014291.  Google Scholar

[13]

K. T. Joseph, A Riemann problem whose viscosity solutions contain $\delta$-measures, Asymptotic Anal., 7 (1993), 105-120.   Google Scholar

[14]

H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014.  Google Scholar

[15]

H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2$\times$ 2 system of conservation laws, Proc. Edinb. Math. Soc., 55 (2012), 711-729.  doi: 10.1017/S0013091512000065.  Google Scholar

[16]

B. L. Keyfitz and H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ration. Mech. Anal., 72 (1980), 219-241.  doi: 10.1007/BF00281590.  Google Scholar

[17]

B. L. Keyfitz and H. C. Kranzer, Spaces of weighted measures for conservation laws with singular shock solutions, J. Differ. Equ., 118 (1995), 420-451.  doi: 10.1006/jdeq.1995.1080.  Google Scholar

[18]

Z. Li and B. C. Y. Lu, Surface tension of aqueous electrolyte solutions at high concentrations-representation and prediction, Chem. Eng. Sci., 56 (2001), 2879-2888.  doi: 10.1016/S0009-2509(00)00525-X.  Google Scholar

[19]

F. A. Long and G. C. Nutting, The relative surface tension of potassium chloride solutions by a differential bubble pressure method1, J. Amer. Chem. Soc., 64 (1942), 2476-2482.   Google Scholar

[20]

Mi nhajulT. Raja Sekhar and G. P. Raja Sekhar, Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution, Commun. Pure Appl. Anal., 18 (2019), 3367-3386.  doi: 10.3934/cpaa.2019152.  Google Scholar

[21]

M. Nedeljkov, Delta and singular delta locus for one-dimensional systems of conservation laws, Math. Meth. Appl. Sci., 27 (2004), 931-955.  doi: 10.1002/mma.480.  Google Scholar

[22]

A. Sen and T. Raja Sekhar, Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation, Commun. Pure Appl. Anal., 18 (2019), 931-942.  doi: 10.3934/cpaa.2019045.  Google Scholar

[23]

A. SenT. Raja Sekhar and V. D. Sharma, Wave interactions and stability of the Riemann solution for a strictly hyperbolic system of conservation laws, Q. Appl. Math., 75 (2017), 539-554.  doi: 10.1090/qam/1466.  Google Scholar

[24]

C. Shen, Delta shock wave solution for a symmetric Keyfitz-Kranzer system, Appl. Math. Lett., 77 (2018), 35-43.  doi: 10.1016/j.aml.2017.09.016.  Google Scholar

[25]

W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Am. Math. Soc., 654 (1999). doi: 10.1090/memo/0654.  Google Scholar

[26]

M. Sun, Interactions of delta shock waves for the chromatography equations, Appl. Math. Lett., 26 (2013), 631-637.  doi: 10.1016/j.aml.2013.01.002.  Google Scholar

[27]

D. TanT. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equ., 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093.  Google Scholar

[28]

B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.  doi: 10.2307/1999646.  Google Scholar

[29]

S. K. Wilson, The levelling of paint films, IMA J. Appl. Math., 50 (1993), 149-166.  doi: 10.1093/imamat/50.2.149.  Google Scholar

Figure 1.  Wave curves in $ (h, b) $ phase plane
Figure 2.  $ J+R $ when $ 0<h_lb_l<h_rb_r $
Figure 3.  $ J+S $ when $ 0<h_rb_r<h_lb_l $
Figure 4.  $ \delta{S} $ when $ b_{l, r}>0 $, $ h_l>0 $ and $ h_r = 0 $
Figure 5.  When $ 0<h_mb_m<h_lb_l $ and $ h_r = 0 $
Figure 6.  When $ 0<h_lb_l<h_mb_m $ and $ h_r = 0 $
[1]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[2]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[3]

Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012

[4]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[5]

Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661

[6]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[7]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[8]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[9]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[10]

Minhajul, T. Raja Sekhar, G. P. Raja Sekhar. Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3367-3386. doi: 10.3934/cpaa.2019152

[11]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[12]

Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks & Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495

[13]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[14]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[15]

Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150

[16]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[17]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[18]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[19]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[20]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (61)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]