May  2020, 19(5): 2655-2677. doi: 10.3934/cpaa.2020116

Existence of weak solution for mean curvature flow with transport term and forcing term

Department of Mathematics/Hakubi Center, Kyoto University, Kitashirakawa-Oiwakecho Sakyo Kyoto 606-8502, Japan

Received  February 2019 Revised  October 2019 Published  March 2020

Fund Project: This work was supported by JSPS KAKENHI Grant Numbers JP16K17622, JP18H03670, and JSPS Leading Initiative for Excellent Young Researchers (LEADER) operated by Funds for the Development of Human Resources in Science and Technology

We study the mean curvature flow with given non-smooth transport term and forcing term, in suitable Sobolev spaces. We prove the global existence of the weak solutions for the mean curvature flow with the terms, by using the modified Allen-Cahn equation that holds useful properties such as the monotonicity formula.

Citation: Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116
References:
[1]

W. Allard, On the first variation of a varifold, Ann. Math., 95 (1972), 417-491.  doi: 10.2307/1970868.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metal., 27 (1979), 1085-1095.   Google Scholar

[3]

F. J. AlmgrenJ. E. Taylor and L. H. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.  Google Scholar

[4]

L. BertiniP. Buttà and A. Pisante, Stochastic Allen-Cahn approximation of the mean curvature flow: large deviations upper bound, Arch. Ration. Mech. Anal., 224 (2017), 659-707.  doi: 10.1007/s00205-017-1086-3.  Google Scholar

[5] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, N.J., 1978.   Google Scholar
[6]

L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Diff. Equ., 90 (1991), 211-237.  doi: 10.1016/0022-0396(91)90147-2.  Google Scholar

[7]

W. K. BurtonN. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London. Ser. A., 243 (1951), 299-358.  doi: 10.1098/rsta.1951.0006.  Google Scholar

[8]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom., 33 (1991), 749-786.   Google Scholar

[9]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Diff. Equ., 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[10]

X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differ. Geom., 44 (1996), 262-311.   Google Scholar

[11]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[12]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681.   Google Scholar

[13]

H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.  Google Scholar

[14]

Y. Giga, Surface Evolution Equations, Birkhäuser Verlag, Basel, 2006.  Google Scholar

[15]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[16]

J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., 35 (1986), 45-71.  doi: 10.1512/iumj.1986.35.35003.  Google Scholar

[17]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differ. Geom., 38 (1993), 417-461.   Google Scholar

[18]

T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994). doi: 10.1090/memo/0520.  Google Scholar

[19]

K. Kasai and Y. Tonegawa, A general regularity theory for weak mean curvature flow, Calc. Var. Partial Differ. Equ., 50 (2014), 1-68.  doi: 10.1007/s00526-013-0626-4.  Google Scholar

[20]

L. Kim and Y. Tonegawa, On the mean curvature flow of grain boundaries, Ann. Inst. Fourier, 67 (2017), 43-142.  doi: 10.5802/aif.3077.  Google Scholar

[21]

C. LiuN. Sato and Y. Tonegawa, On the existence of mean curvature flow with transport term, Interfaces Free Bound., 12 (2010), 251-277.  doi: 10.4171/IFB/234.  Google Scholar

[22]

C. LiuN. Sato and Y. Tonegawa, Two-phase flow problem coupled with mean curvature flow, Interfaces Free Bound., 14 (2012), 185-203.  doi: 10.4171/IFB/279.  Google Scholar

[23]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal., 159 (2001), 229-252.  doi: 10.1007/s002050100158.  Google Scholar

[24]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., 3 (1995), 253-271.  doi: 10.1007/BF01205007.  Google Scholar

[25]

N. G. Meyers and W. P. Ziemmer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math., 99 (1977), 1345-1360.  doi: 10.2307/2374028.  Google Scholar

[26]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Commun. Pure Appl. Math., 38 (1985), 679-684.  doi: 10.1002/cpa.3160380515.  Google Scholar

[27]

L. Mugnai and M. Röger, The Allen-Cahn action functional in higher dimensions, Interfaces Free Bound., 10 (2008), 45-78.  doi: 10.4171/IFB/179.  Google Scholar

[28]

L. Mugnai and M. Röger, Convergence of perturbed Allen-Cahn equations to forced mean curvature flow, Indiana Univ. Math. J., 60 (2011), 41-75.  doi: 10.1512/iumj.2011.60.3949.  Google Scholar

[29]

M. Röger and R. Schätzle, On a modified conjecture of De Giorgi, Math. Z., 254 (2006), 675-714.  doi: 10.1007/s00209-006-0002-6.  Google Scholar

[30]

J. RubinsteinP. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.  doi: 10.1137/0149007.  Google Scholar

[31]

L. Simon, Lectures on geometric measure theory, Proceedings of the Center for Mathematical Analysis, Australian National University, Vol. 3, Australian National University, 1983.  Google Scholar

[32]

H. M. Soner, Motion of a set by the curvature of its boundary, J. Differ. Equ., 101 (1993), 313-372.  doi: 10.1006/jdeq.1993.1015.  Google Scholar

[33]

H. M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling, Arch. Ration. Mech. Anal., 131 (1995), 139-197.  doi: 10.1007/BF00386194.  Google Scholar

[34]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, J. Geom. Anal., 7 (1997), 437-475.  doi: 10.1007/BF02921628.  Google Scholar

[35]

K. Takasao, Existence of weak solution for volume preserving mean curvature flow via phase field method, Indiana Univ. Math. J., 66 (2017), 2015-2035.  doi: 10.1512/iumj.2017.66.6183.  Google Scholar

[36]

K. Takasao and Y. Tonegawa, Existence and regularity of mean curvature flow with transport term in higher dimensions, Math. Ann., 364 (2016), 857-935.  doi: 10.1007/s00208-015-1237-5.  Google Scholar

[37]

Y. Tonegawa, A second derivative Hölder estimate for weak mean curvature flow, Adv. Calc. Var., 7 (2014), 91-138.  doi: 10.1515/acv-2013-0104.  Google Scholar

[38]

Y. Tonegawa, Brakke's Mean Curvature Flow, SpringerBriefs in Mathematics, Springer Singapore, 2019. doi: 10.1007/978-981-13-7075-5.  Google Scholar

[39]

W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

W. Allard, On the first variation of a varifold, Ann. Math., 95 (1972), 417-491.  doi: 10.2307/1970868.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metal., 27 (1979), 1085-1095.   Google Scholar

[3]

F. J. AlmgrenJ. E. Taylor and L. H. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.  Google Scholar

[4]

L. BertiniP. Buttà and A. Pisante, Stochastic Allen-Cahn approximation of the mean curvature flow: large deviations upper bound, Arch. Ration. Mech. Anal., 224 (2017), 659-707.  doi: 10.1007/s00205-017-1086-3.  Google Scholar

[5] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, N.J., 1978.   Google Scholar
[6]

L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Diff. Equ., 90 (1991), 211-237.  doi: 10.1016/0022-0396(91)90147-2.  Google Scholar

[7]

W. K. BurtonN. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London. Ser. A., 243 (1951), 299-358.  doi: 10.1098/rsta.1951.0006.  Google Scholar

[8]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom., 33 (1991), 749-786.   Google Scholar

[9]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Diff. Equ., 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[10]

X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differ. Geom., 44 (1996), 262-311.   Google Scholar

[11]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[12]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom., 33 (1991), 635-681.   Google Scholar

[13]

H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.  Google Scholar

[14]

Y. Giga, Surface Evolution Equations, Birkhäuser Verlag, Basel, 2006.  Google Scholar

[15]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[16]

J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., 35 (1986), 45-71.  doi: 10.1512/iumj.1986.35.35003.  Google Scholar

[17]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differ. Geom., 38 (1993), 417-461.   Google Scholar

[18]

T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994). doi: 10.1090/memo/0520.  Google Scholar

[19]

K. Kasai and Y. Tonegawa, A general regularity theory for weak mean curvature flow, Calc. Var. Partial Differ. Equ., 50 (2014), 1-68.  doi: 10.1007/s00526-013-0626-4.  Google Scholar

[20]

L. Kim and Y. Tonegawa, On the mean curvature flow of grain boundaries, Ann. Inst. Fourier, 67 (2017), 43-142.  doi: 10.5802/aif.3077.  Google Scholar

[21]

C. LiuN. Sato and Y. Tonegawa, On the existence of mean curvature flow with transport term, Interfaces Free Bound., 12 (2010), 251-277.  doi: 10.4171/IFB/234.  Google Scholar

[22]

C. LiuN. Sato and Y. Tonegawa, Two-phase flow problem coupled with mean curvature flow, Interfaces Free Bound., 14 (2012), 185-203.  doi: 10.4171/IFB/279.  Google Scholar

[23]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal., 159 (2001), 229-252.  doi: 10.1007/s002050100158.  Google Scholar

[24]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., 3 (1995), 253-271.  doi: 10.1007/BF01205007.  Google Scholar

[25]

N. G. Meyers and W. P. Ziemmer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math., 99 (1977), 1345-1360.  doi: 10.2307/2374028.  Google Scholar

[26]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Commun. Pure Appl. Math., 38 (1985), 679-684.  doi: 10.1002/cpa.3160380515.  Google Scholar

[27]

L. Mugnai and M. Röger, The Allen-Cahn action functional in higher dimensions, Interfaces Free Bound., 10 (2008), 45-78.  doi: 10.4171/IFB/179.  Google Scholar

[28]

L. Mugnai and M. Röger, Convergence of perturbed Allen-Cahn equations to forced mean curvature flow, Indiana Univ. Math. J., 60 (2011), 41-75.  doi: 10.1512/iumj.2011.60.3949.  Google Scholar

[29]

M. Röger and R. Schätzle, On a modified conjecture of De Giorgi, Math. Z., 254 (2006), 675-714.  doi: 10.1007/s00209-006-0002-6.  Google Scholar

[30]

J. RubinsteinP. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.  doi: 10.1137/0149007.  Google Scholar

[31]

L. Simon, Lectures on geometric measure theory, Proceedings of the Center for Mathematical Analysis, Australian National University, Vol. 3, Australian National University, 1983.  Google Scholar

[32]

H. M. Soner, Motion of a set by the curvature of its boundary, J. Differ. Equ., 101 (1993), 313-372.  doi: 10.1006/jdeq.1993.1015.  Google Scholar

[33]

H. M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka problem with kinetic undercooling, Arch. Ration. Mech. Anal., 131 (1995), 139-197.  doi: 10.1007/BF00386194.  Google Scholar

[34]

H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, J. Geom. Anal., 7 (1997), 437-475.  doi: 10.1007/BF02921628.  Google Scholar

[35]

K. Takasao, Existence of weak solution for volume preserving mean curvature flow via phase field method, Indiana Univ. Math. J., 66 (2017), 2015-2035.  doi: 10.1512/iumj.2017.66.6183.  Google Scholar

[36]

K. Takasao and Y. Tonegawa, Existence and regularity of mean curvature flow with transport term in higher dimensions, Math. Ann., 364 (2016), 857-935.  doi: 10.1007/s00208-015-1237-5.  Google Scholar

[37]

Y. Tonegawa, A second derivative Hölder estimate for weak mean curvature flow, Adv. Calc. Var., 7 (2014), 91-138.  doi: 10.1515/acv-2013-0104.  Google Scholar

[38]

Y. Tonegawa, Brakke's Mean Curvature Flow, SpringerBriefs in Mathematics, Springer Singapore, 2019. doi: 10.1007/978-981-13-7075-5.  Google Scholar

[39]

W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[2]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[3]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[4]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[5]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[6]

Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113

[7]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[8]

Xiaofeng Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1057-1070. doi: 10.3934/dcdsb.2009.11.1057

[9]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[10]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[11]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[12]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[13]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[14]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[15]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[16]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[17]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[18]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2020025

[19]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[20]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (30)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]