In this paper, we study the asymptotic analysis of 1D compressible Navier-Stokes-Vlasov equations. By taking advantage of the one space dimension, we obtain the hydrodynamic limit for compressible Navier-Stokes-Vlasov equations with the pressure $ P(\rho) = A\rho^{\gamma} $ $ (\gamma>1) $. The proof relies on weak convergence method.
Citation: |
[1] |
S. Benjelloun, L. Desvillettes and A. Moussa, Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid, J. Hyperbolic Differ. Equ., 11 (2014), 109-133.
doi: 10.1142/S0219891614500027.![]() ![]() ![]() |
[2] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differ. Integral Equ., 22 (2009), 1247-1271.
![]() ![]() |
[3] |
R. Caflisch and G. C. Papanicolaou, Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983), 885-906.
doi: 10.1137/0143057.![]() ![]() ![]() |
[4] |
J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.
doi: 10.1080/03605300500394389.![]() ![]() ![]() |
[5] |
J. A. Carrillo, Y. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 33 (2016), 273-307.
doi: 10.1016/j.anihpc.2014.10.002.![]() ![]() ![]() |
[6] |
J. A. Carrillo, R. J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258.
doi: 10.3934/krm.2011.4.227.![]() ![]() ![]() |
[7] |
R. M. Chen, Y. F. Su and L. Yao, Hydrodynamic limit for 1D compressible Navier-Stokes-Vlasov equations, Preprint, 2018.
doi: 10.1063/1.4955026.![]() ![]() ![]() |
[8] |
E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.
![]() ![]() |
[9] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.
doi: 10.1007/PL00000976.![]() ![]() ![]() |
[10] |
T. Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb. Sect. A Math., 131 (2001), 1371-1384.
doi: 10.1017/S030821050000144X.![]() ![]() ![]() |
[11] |
T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202.
doi: 10.1137/090776755.![]() ![]() ![]() |
[12] |
T. Goudon, P. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.
doi: 10.1512/iumj.2004.53.2508.![]() ![]() ![]() |
[13] |
T. Goudon, P. E. Jabin and A. F. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.
doi: 10.1512/iumj.2004.53.2509.![]() ![]() ![]() |
[14] |
K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.
doi: 10.1007/BF03167396.![]() ![]() ![]() |
[15] |
M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edition, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7985-8.![]() ![]() ![]() |
[16] |
M. J. Kang and A. F. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.
doi: 10.1142/S0218202515500542.![]() ![]() ![]() |
[17] |
N. Leger and A. F. Vasseur, Study of a generalized fragmentation model for sprays, J. Hyperbolic Differ. Equ., 6 (2009), 185-206.
doi: 10.1142/S0219891609001770.![]() ![]() ![]() |
[18] |
F. C. Li, Y. M. Mu and D. H. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.
doi: 10.1137/15M1053049.![]() ![]() ![]() |
[19] |
F. H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.
doi: 10.1002/cpa.20159.![]() ![]() ![]() |
[20] |
P.L. Lions, Mathematical Topics in Fluid Mechanics, Compressible Models, Vol. II, Clarendon Press, Oxford, 1998.
![]() ![]() |
[21] |
A. Mellet and A. F. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.
doi: 10.1142/S0218202507002194.![]() ![]() ![]() |
[22] |
A. Mellet and A. F. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.
doi: 10.1007/s00220-008-0523-4.![]() ![]() ![]() |
[23] |
J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061.![]() ![]() ![]() |
[24] |
D. H. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differ. Equ., 259 (2015), 3976-4008.
doi: 10.1016/j.jde.2015.05.016.![]() ![]() ![]() |
[25] |
C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.
doi: 10.1016/j.matpur.2013.01.001.![]() ![]() ![]() |