• Previous Article
    $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic analysis for 1D compressible Navier-Stokes-Vlasov equations
May  2020, 19(5): 2751-2776. doi: 10.3934/cpaa.2020120

Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. 

National Engineering Laboratory of, Integrated Transportation Big Data Application Technology, Chengdu, Sichuan 610031, China

3. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author

Received  April 2019 Revised  September 2019 Published  March 2020

Fund Project: The work is supported by NSFC (11601446, 11701475, 11871049, 11971394), Sichuan Science and Technology Program (2019YJ0215), and Open Research Fund for National Engineering Laboratory of Integrated Transportation Big Data Application Technology (CTBDAT201905)

In this paper, we study the long term behavior of non-autonomous fractional FitzHugh-Nagumo systems with random forcing given by an approximation of white noise, called Wong-Zakai approximation. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximation fractional FitzHugh-Nagumo systems, and then establish the upper semicontinuity of attractors of system driven by a linear multiplicative Wong-Zakai approximations as random forcing approaches white noise in some sense.

Citation: Dingshi Li, Xiaohu Wang, Junyilang Zhao. Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2751-2776. doi: 10.3934/cpaa.2020120
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Commun. Partial Differ. Equ., 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[6]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[7]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[8]

H. CuiM. Freitas and J. Langa, Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1297-1324.  doi: 10.3934/dcdsb.2018152.  Google Scholar

[9]

H. Cui and J. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151.   Google Scholar

[12]

F. Flandoli, Regularity Theory and Stochastic Flows for Parabolic SPDEs, Stochastics Monographs, Vol. 9 Gordon and Breach, London, 1995.  Google Scholar

[13]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $ \mathbb{R}^n$, J. Differ. Equ., 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[15]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.  Google Scholar

[16]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[17]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[18]

Q. Guan and Z. Ma, Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Relat. Field, 134 (2006), 649-694.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[19]

Q. Guan and Z. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[21]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[22]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. A - Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[23]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[25]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differ. Equ., 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[26]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[27]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[28]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.  Google Scholar

[29]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equation, J. Dyn. Differ. Equ., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[30]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[31]

J. ShenK. Lu and W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differ. Equ., 255 (2013), 4185-4225.  doi: 10.1016/j.jde.2013.08.003.  Google Scholar

[32]

J. ShenJ. ZhaoK. Lu and B. Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differ. Equ., 266 (2019), 4568-4623.  doi: 10.1016/j.jde.2018.10.008.  Google Scholar

[33]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[34]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[35]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[36]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[37]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.  Google Scholar

[38]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[39]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[40]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[41]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differ. Equ., 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[4]

W. J. BeynB. GessP. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Commun. Partial Differ. Equ., 36 (2011), 446-469.  doi: 10.1080/03605302.2010.523919.  Google Scholar

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[6]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[7]

T. CaraballoJ. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 525-539.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[8]

H. CuiM. Freitas and J. Langa, Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1297-1324.  doi: 10.3934/dcdsb.2018152.  Google Scholar

[9]

H. Cui and J. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151.   Google Scholar

[12]

F. Flandoli, Regularity Theory and Stochastic Flows for Parabolic SPDEs, Stochastics Monographs, Vol. 9 Gordon and Breach, London, 1995.  Google Scholar

[13]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $ \mathbb{R}^n$, J. Differ. Equ., 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[15]

A. GuK. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.  doi: 10.3934/dcds.2019008.  Google Scholar

[16]

A. Gu and B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.  doi: 10.3934/dcdsb.2018072.  Google Scholar

[17]

Q. Guan, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266 (2006), 289-329.  doi: 10.1007/s00220-006-0054-9.  Google Scholar

[18]

Q. Guan and Z. Ma, Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Relat. Field, 134 (2006), 649-694.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[19]

Q. Guan and Z. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009), 855-882.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[21]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[22]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. A - Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[23]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[25]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differ. Equ., 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[26]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $ \mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.  Google Scholar

[27]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[28]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.  Google Scholar

[29]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equation, J. Dyn. Differ. Equ., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[30]

K. Lu and Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equ., 251 (2011), 2853-2895.  doi: 10.1016/j.jde.2011.05.032.  Google Scholar

[31]

J. ShenK. Lu and W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differ. Equ., 255 (2013), 4185-4225.  doi: 10.1016/j.jde.2013.08.003.  Google Scholar

[32]

J. ShenJ. ZhaoK. Lu and B. Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differ. Equ., 266 (2019), 4568-4623.  doi: 10.1016/j.jde.2018.10.008.  Google Scholar

[33]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[34]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $ \mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[35]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[36]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[37]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.  Google Scholar

[38]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[39]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.  Google Scholar

[40]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[41]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differ. Equ., 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[1]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[2]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[3]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[4]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[5]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[6]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[7]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[8]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[9]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[10]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[11]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[12]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[13]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118

[14]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[15]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[16]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020055

[17]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[18]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[19]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[20]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (47)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]