In this paper, we consider the following elliptic problem
$ -\texttt{div}(|\nabla u|^{N-2}\nabla u)+V(x)|u|^{N-2}u = \frac{f(x, u)}{|x|^{\eta}}\; \; \operatorname{in}\; \; \mathbb{R}^{N} $
and its perturbation problem, where $ N\geq 2 $, $ 0<\eta<N $, $ V(x) \geq V_{0 }> 0 $ and $ f(x, t) $ has a critical exponential growth behavior. By using the variational technique and the indirection method, the existence of a positive ground state solution is proved. For the perturbation problem, the existence of two distinct nontrivial weak solutions is proved.
Citation: |
[1] |
A. Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $\mathbb{R}^{N}$ and its applications, Int. Math. Res. Notices, 13 (2010), 2394-2426.
doi: 10.1093/imrn/rnp194.![]() ![]() ![]() |
[2] |
C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb{R}^{N}$, J. Differ. Equ., 246 (2009), 1288-1311.
doi: 10.1016/j.jde.2008.08.004.![]() ![]() ![]() |
[3] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[4] |
D. M. Cao, Nontrivial solution of semilinear elliptic equations with critical exponent in $\mathbb{R}^{2}$, Commun. Partial Differ. Equ., 17 (1992), 407-435.
doi: 10.1080/03605309208820848.![]() ![]() ![]() |
[5] |
G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336.
![]() ![]() |
[6] |
G. Cerami, On the existence of eigenvalues for a nonlinear boundary value problem, Ann. Mat. Pura Appl., 124 (1980), 161-179.
doi: 10.1007/BF01795391.![]() ![]() ![]() |
[7] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equ., 3 (1995), 139-153.
doi: 10.1007/BF01205003.![]() ![]() ![]() |
[8] |
M. de Souza and J. M. do Ó, On singular Trudinger-Moser type inequalities for unbounded domains and their best exponents, Potential Anal., 38 (2013), 1091-1101.
doi: 10.1007/s11118-012-9308-7.![]() ![]() ![]() |
[9] |
J. M. do Ó, N-Laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419.![]() ![]() ![]() |
[10] |
J. M. do Ó, E. de Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $\mathbb{R}^{N}$, J. Differ. Equ., 246 (2009), 1363-1386.
doi: 10.1016/j.jde.2008.11.020.![]() ![]() ![]() |
[11] |
J. M. do Ó, M. de Souza, E. de Medeiros and U. Severo, An improvement for the Trudinger-Moser inequality and applications, J. Differ. Equ., 256 (2014), 1317-1349.
doi: 10.1016/j.jde.2013.10.016.![]() ![]() ![]() |
[12] |
N. Lam and G. Lu, N-Laplacian equations in $\mathbb{R}^{N}$ with subcritical and critical growth without the Ambrosetti-Rabinowitz condition, Adv. Nonlinear Stud., 13 (2013), 289-308.
doi: 10.1515/ans-2013-0203.![]() ![]() ![]() |
[13] |
N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $n$-Laplacian type with critical exponential growth in $\mathbb{R}^{N}$, J. Funct. Anal., 262 (2012), 1132-1165.
doi: 10.1016/j.jfa.2011.10.012.![]() ![]() ![]() |
[14] |
N. Lam and G. Lu, Elliptic equations and systems with subscritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143.
doi: 10.1007/s12220-012-9330-4.![]() ![]() ![]() |
[15] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoam, 1 (1985), 145-201.
doi: 10.4171/RMI/6.![]() ![]() ![]() |
[16] |
R. Panda, Nontrivial solution of a quasilinear elliptic equation with critical growth in $\mathbb{R}^{N}$, Proc. Indian Acad. Sci. Math. Sci., 105 (1995), 425-444.
doi: 10.1007/BF02836879.![]() ![]() ![]() |
[17] |
Y. Yang, Adams type inequalities and related elliptic partial differential equations in dimension four, J. Differ. Equ., 252 (2012), 2266-2295.
doi: 10.1016/j.jde.2011.08.027.![]() ![]() ![]() |
[18] |
Y. Yang, Existence of positive solutions to quasilinear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal., 262 (2012), 1679-1704.
doi: 10.1016/j.jfa.2011.11.018.![]() ![]() ![]() |
[19] |
J. M. do Ó, M. de Souza, E. de Medeiros and U. Severo, Critical points for a functional involving critical growth of Trudinger-Moser type, Potential Anal., 42 (2015), 229-246.
doi: 10.1007/s11118-014-9431-8.![]() ![]() ![]() |
[20] |
C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in $\mathbb{R}^{N}$ and $n$-Laplace equations, Adv. Nonlinear Stud., 18 (2018), 567-585.
doi: 10.1515/ans-2017-6041.![]() ![]() ![]() |