In this paper we consider the following semi-linear elliptic problem
$ \begin{equation*} -\Delta u+\lambda u = |u|^{p-1}u\quad\mbox{in}\,\, \mathcal{O}, \tag{P} \end{equation*} $
where $ \mathcal{O} = \mathbb{R}^N $; or $ \mathcal{O} = \mathbb{R}^N_+ = \{x = (x',x_N),\, x'\in \mathbb{R}^{N-1},x_N>0\} $ with Dirichlet boundary conditions. Here $ N\geq2 $, $ p>1 $ and $ \lambda $ is a positive real parameter. The main goal ofthis work is to analyze the influence of the linear term $ \lambda u $, in order to classify regular stable solutions possibly unbounded and sign-changing. Our analysis reveals the nonexistence of nontrivial stable solutions (respectively solutions which are stable outside a compact set) for all $ p> 1 $ (respectively for all $ p\geq \frac{N+2}{N-2} $, or $ 1<p<\frac{N+2}{N-2} $ and $ |u|^{p-1}<\frac{\lambda (p+1)}{2} $). Inspired by [
Regarding the case $ \mathcal{O} = \mathbb{R}^N $, we obtain a complete classification which states that problem $ (P) $ has regular solutions which are stable outside a compact set if and only if $ p\in (1,\infty) $ and $ N = 2 $; or $ p\in(1,\frac{N+2}{N-2}) $ and $ N\geq3. $
Citation: |
[1] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $ \mathbb{R}^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3.![]() ![]() ![]() |
[2] |
A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Commun. Pure. App. Math., 45 (1992), 1205-1215.
doi: 10.1002/cpa.3160450908.![]() ![]() ![]() |
[3] |
M. Ben Ayed, H. Fourti and A. Selmi, Harmonic functions with nonlinear Neumann boundary condition and their Morse indices, Nonlinear Anal. Real World Appl., 38 (2017), 96-112.
doi: 10.1016/j.nonrwa.2017.04.012.![]() ![]() ![]() |
[4] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Part Ⅱ, Existence of infinitly many solutios groud, Ration. Mech. Anal., 82 (1982), 347-369.
doi: 10.1007/BF00250556.![]() ![]() ![]() |
[5] |
E. N. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc. angew. Math., 46 (1992), 425-434.
doi: 10.1017/S0004972700012089.![]() ![]() ![]() |
[6] |
J. Dávila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.
doi: 10.1016/j.aim.2014.02.034.![]() ![]() ![]() |
[7] |
D. G. de Figueiredo and J. Yang, On a semilinear elliptic problem without (PS) condition, J. Differ. Equ., 187 (2003), 412-428.
doi: 10.1016/S0022-0396(02)00055-4.![]() ![]() ![]() |
[8] |
B. Devyver, On the finiteness of the Morse index for Schröinger operators, Manuscr. Math., 139 (2012), 249-271.
doi: 10.1007/s00229-011-0522-1.![]() ![]() ![]() |
[9] |
L. Dupaigne and A. Harrabi, The Lane-Emden Equation in Strips, Proc. R. Soc. Edinb. Sect. A Math., 148 (2018), 51-62.
doi: 10.1017/S0308210517000142.![]() ![]() ![]() |
[10] |
M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. R. Soc. Edinb. Sect. A Math., 93 (1982), 1-14.
doi: 10.1017/S0308210500031607.![]() ![]() ![]() |
[11] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ \mathbb{R}^N $, J. Math.Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001.![]() ![]() ![]() |
[12] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6 (1981), 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
[13] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
[14] |
D. Gilbarg et Neil S Trudinger, Elliptic Partial Differntial Equations of Second Order, Grundlehren Math. Wiss., Vol. 224, Springer-Verlag, New York, 1977.
![]() ![]() |
[15] |
A. Harrabi, M. Ahmadou, S. Rebhi and A. Selmi, A priori estimates for superlinear and subcritical elliptic equations: the Neumann boundary condition case, Manuscr. Math., 137 (2012), 525-544.
doi: 10.1007/s00229-011-0488-z.![]() ![]() ![]() |
[16] |
A. Harrabi and B. Rahal, On the sixth-order Joseph-Lundgren exponent, Ann. Henri Poincare, 18 (2017), 1055-1094.
doi: 10.1007/s00023-016-0522-5.![]() ![]() ![]() |
[17] |
A. Harrabi, B. Rahal, Liouville results for m-Laplace equations in half-space and strips with mixed boundary value conditions and Finite Morse index, J. Dyn. Differ. Equ., 30 (2018), 1161-1185.
doi: 10.1007/s10884-017-9593-3.![]() ![]() ![]() |
[18] |
A. Harrabi, S. Rebhi and A. Selmi, Solutions of superlinear equations and their Morse indices, Ⅰ, Duke. Math. J., 94 (1998), 141-157.
doi: 10.1215/S0012-7094-98-09407-8.![]() ![]() ![]() |
[19] |
A. Harrabi, S. Rebhi and A. Selmi, Solutions of superlinear equations and their Morse indices, Ⅱ, Duke. Math. J., 94 (1998), 159-179.
doi: 10.1215/S0012-7094-98-09407-8.![]() ![]() ![]() |
[20] |
W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pac. J. Math., 75 (1978), 219-226.
![]() ![]() |
[21] |
M. Ramos and P. Rodrigues, On a fourth order superlinear elliptic problem, Electron. J. Differ. Equ. Conf., 06 (2001), 243-255.
![]() ![]() |
[22] |
M. Ramos, S. Terracini and C. Troestler, Superlinear indefinite elliptic problems and Phozaev type identities, J. Funct. Anal., 159 (1998), 596-628.
doi: 10.1006/jfan.1998.3332.![]() ![]() ![]() |
[23] |
F. Pacard, Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscr. Math., 79 (1993), 161-172.
doi: 10.1007/BF02568335.![]() ![]() ![]() |
[24] |
S. I. Pohozaev, Eigenfunctions of $\Delta u+lf\left( u \right)=0$, Soviet Math. Dokl., 6 (1965), 1408-1411.
![]() |
[25] |
P. Polácik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Ⅰ. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
[26] |
S. Solimini, Morse index estimates in min-max theorems, Manuscr. Math., 63 (1989), 421-453.
doi: 10.1007/BF01171757.![]() ![]() ![]() |
[27] |
X. Wang, X. Zheng, Liouville theorem for elliptic equations with mixed boundary valu conditions and finite Morse indices, J. Inequal. Appl., (2015), 860–871.
doi: 10.1186/s13660-015-0867-1.![]() ![]() ![]() |
[28] |
X. Yu, Solution of mixed boundary problems and their Morse indices, Nonlinear Anal., 96 (2014), 146-153.
doi: 10.1016/j.na.2013.11.011.![]() ![]() ![]() |
[29] |
X. Yu, Liouville theorem for elliptic equations with nonlinear boundary value conditions and finite Morse indices, J. Math. Anal. Appl., 421 (2015), 436-443.
doi: 10.1016/j.jmaa.2014.07.010.![]() ![]() ![]() |
[30] |
X. Yu, Solution of fractional Laplacian equations and their Morse indices, J. Differ. Equ., 260 (2016), 860-871.
doi: 10.1016/j.jde.2015.09.010.![]() ![]() ![]() |