June  2020, 19(6): 2949-2964. doi: 10.3934/cpaa.2020129

Classification of singular sets of solutions to elliptic equations

1. 

School of Statistics and Mathematics, Nanjing Audit University, Nanjing, Jiangsu, 211815, China

2. 

School of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China

3. 

School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China

* Corresponding author

Received  December 2018 Revised  December 2019 Published  March 2020

Fund Project: The work is supported by National Natural Science Foundation of China (No.11401307, No.11401310, No.11771214) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0321). The first author is fully supported by China Scholarship Council(CSC) for visiting Rutgers University(201806840122)

In this paper, we mainly investigate the classification of singular sets of solutions to elliptic equations. Firstly, we define the $ j $-symmetric singular set $ S^j(u) $ of solution $ u $, and show that the Hausdorff dimension of the $ j $-symmetric singular set $ S^j(u) $ is not more than $ j $. Then we prove the generalized $ \varepsilon $-regularity lemma for $ j $-symmetric homogeneous harmonic polynomial $ P $ with origin $ 0 $ as the isolated critical point in $ \mathbb{R}^{n-j} $, and by the generalized $ \varepsilon $-regularity lemma, we show the Hausdorff measure estimate of the $ j $-symmetric singular set $ S^j(u) $. Moreover, we study the geometric structure of interior singular points of solutions $ u $ in a planar bounded domain.

Citation: Haiyun Deng, Hairong Liu, Long Tian. Classification of singular sets of solutions to elliptic equations. Communications on Pure and Applied Analysis, 2020, 19 (6) : 2949-2964. doi: 10.3934/cpaa.2020129
References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa-Cl. Sci., 14 (1987), 229-256. 

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268.  doi: 10.1137/S0036141093249080.

[3]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2$^nd$ edition, Graduate Texts in Mathematics, Vol. 137, Springer, New York, 2001. doi: 10.1007/978-1-4757-8137-3.

[4]

J. CheegerA. Naber and D. Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math., 68 (2015), 173-209.  doi: 10.1002/cpa.21518.

[5]

H. Y. DengH. R. Liu and and L. Tian, Critical points of solutions to a quasilinear elliptic equation with nonhomogeneous Dirichlet boundary conditions, J. Differ. Equ., 265 (2018), 4133-4157.  doi: 10.1016/j.jde.2018.05.031.

[6]

H. Y. DengH. R. Liu and and L. Tian, Critical points of solutions for the mean curvature equation in strictly convex and nonconvex domains, Israel J. Math., 233 (2019), 311-333.  doi: 10.1007/s11856-019-1906-2.

[7]

H. Y. DengH. R. Liu and L. Tian, Uniqueness of critical points of solutions to the mean curvature equation with Neumann and Robin boundary conditions, J. Math. Anal. Appl., 477 (2019), 1072-1086.  doi: 10.1016/j.jmaa.2019.04.075.

[8]

H. Y. Deng, H. R. Liu and X. P. Yang, Critical points of solutions to a kind of linear elliptic equations in multiply connected domains, preprint, arXiv: 1811.04758.

[9]

H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93 (1988), 161-183.  doi: 10.1007/BF01393691.

[10]

A. Enciso and D. Peralta-Salas, Critical points of Green's functions on complete manifolds, J. Differ. Geom., 92 (2012), 1-29. 

[11]

H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

[12]

N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.  doi: 10.1512/iumj.1986.35.35015.

[13]

Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., 43 (1994), 983-1002.  doi: 10.1512/iumj.1994.43.43043.

[14]

Q. HanR. Hardt and F. H. Lin, Geometric measure of singular sets of elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1425-1443.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1425::AID-CPA8>3.3.CO;2-V.

[15]

Q. HanR. Hardt and F. H. Lin, Singular sets of higher order elliptic equations, Commun. Partial Differ. Equ., 28 (2003), 2045-2063.  doi: 10.1081/PDE-120025495.

[16]

Q. Han and F. H. Lin, Nodal sets of solutions of elliptic differential equations, Unpublished manuscript, 2008. Available from: http://nd.edu/qhan/nodal.pdf.

[17]

R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differ. Geom., 30 (1989), 505-522. 

[18]

R. HardtM. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differ. Geom., 51 (1999), 359-373. 

[19]

M. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of smooth solutions to elliptic equations in dimension 3, Indiana Univ. Math. J., 45 (1996), 15-37.  doi: 10.1512/iumj.1996.45.1957.

[20]

J. Jung and S. Zelditch, Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution, J. Differ. Geom., 102 (2016), 37-66. 

[21]

B. Laurent, Critical sets of eigenfunctions of the Laplacian, J. Geom. Phys., 62 (2012), 2024-2037.  doi: 10.1016/j.geomphys.2012.05.006.

[22]

F.H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 44 (1991), 287-308.  doi: 10.1002/cpa.3160440303.

[23]

F. H. Lin and X. P. Yang, Geometric Measure Theory - An Introduction, Adv. Math., vol.1, Science Press/International Press, Beijing/Boston, 2002.

[24]

A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math., 187 (2018), 221-239.  doi: 10.4007/annals.2018.187.1.4.

[25]

A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture, Ann. Math., 187 (2018), 241-262.  doi: 10.4007/annals.2018.187.1.5.

[26]

A. Logunov and E. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, Operator Theory: Advances and Applications, 261 (2018), 333-344. 

[27] T. M. MacRobert, Spherical Harmonics, An Elementary Treatise on Harmonic Functions with Applications, Pergamon Press, Oxford-New York-Toronto, 1967. 
[28]

R. Magnanini, An introduction to the study of critical points of solutions of elliptic and parabolic equations, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 121-166. 

[29]

A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math., 70 (2017), 1835-1897.  doi: 10.1002/cpa.21708.

[30]

S. Sakaguchi, Critical points of solutions to the obstacle problem in the plane, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 21 (1994), 157-173. 

[31]

C. D. Sogge and S. Zelditch, Lower bounds on the Hausdorff measure of nodal sets, Math. Res. Lett., 18 (2011), 25-37.  doi: 10.4310/MRL.2011.v18.n1.a3.

[32]

L. Tian and X. P. Yang, Measure estimates of nodal sets of bi-harmonic functions, J. Differ. Equ., 256 (2014), 558-576.  doi: 10.1016/j.jde.2013.09.012.

[33]

S. Zelditch, Hausdorff measure of nodal sets of analytic Steklov eigenfunctions, Math. Res. Lett., 22 (2015), 1821-1842.  doi: 10.4310/MRL.2015.v22.n6.a15.

show all references

References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa-Cl. Sci., 14 (1987), 229-256. 

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268.  doi: 10.1137/S0036141093249080.

[3]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2$^nd$ edition, Graduate Texts in Mathematics, Vol. 137, Springer, New York, 2001. doi: 10.1007/978-1-4757-8137-3.

[4]

J. CheegerA. Naber and D. Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math., 68 (2015), 173-209.  doi: 10.1002/cpa.21518.

[5]

H. Y. DengH. R. Liu and and L. Tian, Critical points of solutions to a quasilinear elliptic equation with nonhomogeneous Dirichlet boundary conditions, J. Differ. Equ., 265 (2018), 4133-4157.  doi: 10.1016/j.jde.2018.05.031.

[6]

H. Y. DengH. R. Liu and and L. Tian, Critical points of solutions for the mean curvature equation in strictly convex and nonconvex domains, Israel J. Math., 233 (2019), 311-333.  doi: 10.1007/s11856-019-1906-2.

[7]

H. Y. DengH. R. Liu and L. Tian, Uniqueness of critical points of solutions to the mean curvature equation with Neumann and Robin boundary conditions, J. Math. Anal. Appl., 477 (2019), 1072-1086.  doi: 10.1016/j.jmaa.2019.04.075.

[8]

H. Y. Deng, H. R. Liu and X. P. Yang, Critical points of solutions to a kind of linear elliptic equations in multiply connected domains, preprint, arXiv: 1811.04758.

[9]

H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93 (1988), 161-183.  doi: 10.1007/BF01393691.

[10]

A. Enciso and D. Peralta-Salas, Critical points of Green's functions on complete manifolds, J. Differ. Geom., 92 (2012), 1-29. 

[11]

H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

[12]

N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.  doi: 10.1512/iumj.1986.35.35015.

[13]

Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., 43 (1994), 983-1002.  doi: 10.1512/iumj.1994.43.43043.

[14]

Q. HanR. Hardt and F. H. Lin, Geometric measure of singular sets of elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1425-1443.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1425::AID-CPA8>3.3.CO;2-V.

[15]

Q. HanR. Hardt and F. H. Lin, Singular sets of higher order elliptic equations, Commun. Partial Differ. Equ., 28 (2003), 2045-2063.  doi: 10.1081/PDE-120025495.

[16]

Q. Han and F. H. Lin, Nodal sets of solutions of elliptic differential equations, Unpublished manuscript, 2008. Available from: http://nd.edu/qhan/nodal.pdf.

[17]

R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differ. Geom., 30 (1989), 505-522. 

[18]

R. HardtM. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differ. Geom., 51 (1999), 359-373. 

[19]

M. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of smooth solutions to elliptic equations in dimension 3, Indiana Univ. Math. J., 45 (1996), 15-37.  doi: 10.1512/iumj.1996.45.1957.

[20]

J. Jung and S. Zelditch, Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution, J. Differ. Geom., 102 (2016), 37-66. 

[21]

B. Laurent, Critical sets of eigenfunctions of the Laplacian, J. Geom. Phys., 62 (2012), 2024-2037.  doi: 10.1016/j.geomphys.2012.05.006.

[22]

F.H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 44 (1991), 287-308.  doi: 10.1002/cpa.3160440303.

[23]

F. H. Lin and X. P. Yang, Geometric Measure Theory - An Introduction, Adv. Math., vol.1, Science Press/International Press, Beijing/Boston, 2002.

[24]

A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math., 187 (2018), 221-239.  doi: 10.4007/annals.2018.187.1.4.

[25]

A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture, Ann. Math., 187 (2018), 241-262.  doi: 10.4007/annals.2018.187.1.5.

[26]

A. Logunov and E. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, Operator Theory: Advances and Applications, 261 (2018), 333-344. 

[27] T. M. MacRobert, Spherical Harmonics, An Elementary Treatise on Harmonic Functions with Applications, Pergamon Press, Oxford-New York-Toronto, 1967. 
[28]

R. Magnanini, An introduction to the study of critical points of solutions of elliptic and parabolic equations, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 121-166. 

[29]

A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math., 70 (2017), 1835-1897.  doi: 10.1002/cpa.21708.

[30]

S. Sakaguchi, Critical points of solutions to the obstacle problem in the plane, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 21 (1994), 157-173. 

[31]

C. D. Sogge and S. Zelditch, Lower bounds on the Hausdorff measure of nodal sets, Math. Res. Lett., 18 (2011), 25-37.  doi: 10.4310/MRL.2011.v18.n1.a3.

[32]

L. Tian and X. P. Yang, Measure estimates of nodal sets of bi-harmonic functions, J. Differ. Equ., 256 (2014), 558-576.  doi: 10.1016/j.jde.2013.09.012.

[33]

S. Zelditch, Hausdorff measure of nodal sets of analytic Steklov eigenfunctions, Math. Res. Lett., 22 (2015), 1821-1842.  doi: 10.4310/MRL.2015.v22.n6.a15.

[1]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[2]

Thomas Hagen, Andreas Johann, Hans-Peter Kruse, Florian Rupp, Sebastian Walcher. Dynamical systems and geometric mechanics: A special issue in Honor of Jürgen Scheurle. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : i-iii. doi: 10.3934/dcdss.20204i

[3]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[4]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[5]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[6]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[7]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[8]

Dong Han Kim, Bing Li. Zero-one law of Hausdorff dimensions of the recurrent sets. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5477-5492. doi: 10.3934/dcds.2016041

[9]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[10]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[11]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[12]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[13]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[14]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[15]

Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765

[16]

Magdalena Foryś-Krawiec, Jana Hantáková, Piotr Oprocha. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1435-1463. doi: 10.3934/dcds.2021159

[17]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[18]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[19]

Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437

[20]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (333)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]