June  2020, 19(6): 2965-3031. doi: 10.3934/cpaa.2020130

Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity

Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, JAPAN

Received  February 2019 Revised  October 2019 Published  March 2020

In this paper, we consider the following one-dimensional Schnakenberg model with periodic heterogeneity:
$ \begin{equation*} \begin{cases} u_t-\varepsilon ^2 u_{xx} = d\varepsilon -u+g(x)u^2 v , & x \in (-1,1) ,\; t>0, \\ \varepsilon v_t-Dv_{xx} = \frac{1}{2}-\frac{c}{\varepsilon}g(x)u^2 v , & x \in (-1,1) ,\; t>0, \\ u_x (\pm 1) = v_x (\pm 1) = 0 .\end{cases} \end{equation*} $
where
$ d,c,D>0 $
are given constants,
$ \varepsilon >0 $
is sufficiently small, and
$ g(x) $
is a given positive function. Let
$ N \ge 1 $
be an arbitrary natural number. We assume that
$ g(x) $
is a periodic and symmetric function, namely
$ g(x) = g(-x) $
and
$ g(x) = g(x+2N^{-1}) $
. We study the stability of
$ N $
-peak stationary symmetric solutions. In particular, we are interested in the effect of the periodic heterogeneity
$ g(x) $
above on their stability. For the standard Schnakenberg model, namely the case of
$ g(x) = 1 $
, with
$ d = 0 $
, the stability of
$ N $
-peak solutions was established by Iron, Wei, and Winter in 2004. In this paper, we rigorously give a linear stability analysis and reveal the effect of the periodic heterogeneity on the stability of
$ N $
-peak solution. In particular, we investigate how
$ N $
-peak solutions is stabilized or destabilized by the effect of periodic heterogeneity compared with the case
$ g(x) = 1 $
.
Citation: Yuta Ishii. Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 2965-3031. doi: 10.3934/cpaa.2020130
References:
[1]

W. Ao and C. Liu, The Schnakenberg model with precursors, Discrete Contin. Dyn. Syst., 39 (2019), 1923-1955.  doi: 10.3934/dcds.2019081.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[3]

A. DoelmanA. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: a matched asymptotic approach, Phys. D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[4]

A. Doelman, A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Mem. Amer. Math. Soc., 155 (2002), xii+64. doi: 10.1090/memo/0737.  Google Scholar

[5]

A. DoelmanT. J. Kaper and P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563.  doi: 10.1088/0951-7715/10/2/013.  Google Scholar

[6]

D. IronJ. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y.  Google Scholar

[7]

Y. Ishii and K. Kurata, Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity, Discrete Contin. Dyn. Syst., 39 (2019), 2807-2875.  doi: 10.3934/dcds.2019118.  Google Scholar

[8]

T. KolokolnikovM. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.  doi: 10.1111/j.1467-9590.2005.01554.  Google Scholar

[9]

T. KolokolnikovM. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime, Phys. D, 202 (2005), 258-293.  doi: 10.1016/j.physd.2005.02.009.  Google Scholar

[10]

T. Kolokolnikov and J. Wei, Pattern formation in a reaction-diffusion system with space-dependent feed rate, SIAM Rev., 60 (2018), 626-645.  doi: 10.1137/17M1116027.  Google Scholar

[11]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Physica D, 2019. Available from: https://doi.org/10.1016/j.physd.2019.132247. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[12]

J. Schnakenberg, Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[13]

M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223.  Google Scholar

[14]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion system, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[15]

J. Wei and M. Winter, On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.  doi: 10.3934/dcds.2009.25.363.  Google Scholar

[16]

J. Wei and M. Winter, Flow-distributed spikes for Schnakenberg kinetic, J. Math. Biol., 64 (2012), 211-254.  doi: 10.1007/s00285-011-0412-x.  Google Scholar

[17]

J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Vol. 189, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

show all references

References:
[1]

W. Ao and C. Liu, The Schnakenberg model with precursors, Discrete Contin. Dyn. Syst., 39 (2019), 1923-1955.  doi: 10.3934/dcds.2019081.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[3]

A. DoelmanA. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: a matched asymptotic approach, Phys. D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[4]

A. Doelman, A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Mem. Amer. Math. Soc., 155 (2002), xii+64. doi: 10.1090/memo/0737.  Google Scholar

[5]

A. DoelmanT. J. Kaper and P. A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563.  doi: 10.1088/0951-7715/10/2/013.  Google Scholar

[6]

D. IronJ. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y.  Google Scholar

[7]

Y. Ishii and K. Kurata, Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity, Discrete Contin. Dyn. Syst., 39 (2019), 2807-2875.  doi: 10.3934/dcds.2019118.  Google Scholar

[8]

T. KolokolnikovM. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.  doi: 10.1111/j.1467-9590.2005.01554.  Google Scholar

[9]

T. KolokolnikovM. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime, Phys. D, 202 (2005), 258-293.  doi: 10.1016/j.physd.2005.02.009.  Google Scholar

[10]

T. Kolokolnikov and J. Wei, Pattern formation in a reaction-diffusion system with space-dependent feed rate, SIAM Rev., 60 (2018), 626-645.  doi: 10.1137/17M1116027.  Google Scholar

[11]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Physica D, 2019. Available from: https://doi.org/10.1016/j.physd.2019.132247. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[12]

J. Schnakenberg, Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[13]

M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223.  Google Scholar

[14]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion system, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[15]

J. Wei and M. Winter, On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.  doi: 10.3934/dcds.2009.25.363.  Google Scholar

[16]

J. Wei and M. Winter, Flow-distributed spikes for Schnakenberg kinetic, J. Math. Biol., 64 (2012), 211-254.  doi: 10.1007/s00285-011-0412-x.  Google Scholar

[17]

J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Vol. 189, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

Figure 1.  For $ D_2^{2,+}(\xi_2) > D = (3+\sqrt{17})/16-0.1 $, two-peak solution is stable. For $ D_2^{2,+}(\xi_2) < D = (3+\sqrt{17})/16+0.1 $, two-peak solution is unstable
[1]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[2]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[3]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[4]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[5]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[6]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[7]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[8]

Yuta Ishii, Kazuhiro Kurata. Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2807-2875. doi: 10.3934/dcds.2019118

[9]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

[10]

Minbo Yang, Jianjun Zhang, Yimin Zhang. Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (2) : 493-512. doi: 10.3934/cpaa.2017025

[11]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[12]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020405

[13]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

[14]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[15]

Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191

[16]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[17]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[18]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[19]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[20]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (67)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]