    • Previous Article
Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $\mathbb{R}^N$
• CPAA Home
• This Issue
• Next Article
Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings
September  2020, 19(9): 4655-4666. doi: 10.3934/cpaa.2020131

## Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions

 1 Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA 2 Department of Mathematics and Statisitics, University of North Carolina at Greensboro, Greensboro, NC 27402, USA

* Corresponding author

Received  March 2019 Revised  November 2019 Published  June 2020

We prove the existence of positive radial solutions to the problem
 $\begin{cases} -\Delta _{p}u = \lambda \ K(|x|)f(u)\ \text{in } |x|>r_{0}, \\ \dfrac{\partial u}{\partial n}+\tilde{c}(u)u = 0\ \text{on }|x| = r_{0},\ \ u(x)\rightarrow 0\text{ as }|x|\rightarrow \infty ,\end{cases}$
where
 $\ \Delta _{p}u = div(|\nabla u|^{p-2}\nabla u),\ N>p>1, \Omega = \{x\in \mathbb{R}^{N}:|x|>r_{0}>0\},$
 $f:(0,\infty )\rightarrow \mathbb{R}$
is
 $p$
-superlinear at
 $\infty$
with possible singularity at
 $0,$
and
 $\lambda$
is a small positive parameter. A nonexistence result is also established when
 $f$
has semipositone structure at
 $0.$
Citation: Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure &amp; Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131
##### References:
  W. Allegretto, P. Nistri and P. Zecca, Positive solutions of elliptic nonpositone problems, Differ. Integral Equ., 5 (1992), 95-101. Google Scholar  H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, Siam Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar  A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differ. Integral Equ., 7 (1994), 655-663. Google Scholar  V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc., 124 (1996), 757-763.  doi: 10.1090/S0002-9939-96-03256-X.  Google Scholar  D. Arcoya and A. Zertiti, Existence and non-existence of radially symmetric non-negative solutions for a class of semipositone problems in an annulus, Rend. Math. Appl., 14 (1994), 625-646. Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains, Duke Math. J., (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  K. J. Brown, A. Castro and R. Shivaji, Nonexistence of radially symmetric nonnegative solutionsfor a class of semipositone problems, Differ. Integral Equ., 2 (1989), 541-545. Google Scholar  M. Chhetri and P. Girg, Existence of positive solutions for a class of superlinear semipositone systems, J. Math. Anal. Appl., 408 (2013), 781-788.  doi: 10.1016/j.jmaa.2013.06.041.  Google Scholar  R. Dhanya, Q. Morris and R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 434 (2016), 1533-1548.  doi: 10.1016/j.jmaa.2015.07.016.  Google Scholar  D. D. Hai, On singular Sturm-Liouville boundary value problems, Proc. R. Soc. Edinb., 140A (2010), 49-63.  doi: 10.1017/S0308210508000358.  Google Scholar  D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 456 (2017), 872-881.  doi: 10.1016/j.jmaa.2017.06.088.  Google Scholar  J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, in Handbook of Differential Equations, Elsevier/North-Holand, Amsterdam, (2004) 359–435. Google Scholar  E. Ko, M. Ramaswasmy and R. Shivaji, Uniqueness of positive solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 423 (2015), 399-409.  doi: 10.1016/j.jmaa.2014.09.058.  Google Scholar  P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.  doi: 10.1137/1024101.  Google Scholar  Q. Morris, R. Shivaji and I. Sim, Existence of positive radial solutions for a superlinear semipositone $p$-Laplacian problem on the exterior of a ball, Proc. R. Soc. Edinb., 148A (2018), 409-428.  doi: 10.1017/S0308210517000452.  Google Scholar  R. Shivaji, I. Sim and B. Son, A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball, J. Math. Anal. Appl., 445 (2017), 459-475.  doi: 10.1016/j.jmaa.2016.07.029.  Google Scholar  J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal., 98 (1987), 229-249.  doi: 10.1007/BF00251173.  Google Scholar

show all references

##### References:
  W. Allegretto, P. Nistri and P. Zecca, Positive solutions of elliptic nonpositone problems, Differ. Integral Equ., 5 (1992), 95-101. Google Scholar  H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, Siam Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar  A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differ. Integral Equ., 7 (1994), 655-663. Google Scholar  V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc., 124 (1996), 757-763.  doi: 10.1090/S0002-9939-96-03256-X.  Google Scholar  D. Arcoya and A. Zertiti, Existence and non-existence of radially symmetric non-negative solutions for a class of semipositone problems in an annulus, Rend. Math. Appl., 14 (1994), 625-646. Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains, Duke Math. J., (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  K. J. Brown, A. Castro and R. Shivaji, Nonexistence of radially symmetric nonnegative solutionsfor a class of semipositone problems, Differ. Integral Equ., 2 (1989), 541-545. Google Scholar  M. Chhetri and P. Girg, Existence of positive solutions for a class of superlinear semipositone systems, J. Math. Anal. Appl., 408 (2013), 781-788.  doi: 10.1016/j.jmaa.2013.06.041.  Google Scholar  R. Dhanya, Q. Morris and R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 434 (2016), 1533-1548.  doi: 10.1016/j.jmaa.2015.07.016.  Google Scholar  D. D. Hai, On singular Sturm-Liouville boundary value problems, Proc. R. Soc. Edinb., 140A (2010), 49-63.  doi: 10.1017/S0308210508000358.  Google Scholar  D. D. Hai and R. Shivaji, Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions, J. Math. Anal. Appl., 456 (2017), 872-881.  doi: 10.1016/j.jmaa.2017.06.088.  Google Scholar  J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, in Handbook of Differential Equations, Elsevier/North-Holand, Amsterdam, (2004) 359–435. Google Scholar  E. Ko, M. Ramaswasmy and R. Shivaji, Uniqueness of positive solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 423 (2015), 399-409.  doi: 10.1016/j.jmaa.2014.09.058.  Google Scholar  P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467.  doi: 10.1137/1024101.  Google Scholar  Q. Morris, R. Shivaji and I. Sim, Existence of positive radial solutions for a superlinear semipositone $p$-Laplacian problem on the exterior of a ball, Proc. R. Soc. Edinb., 148A (2018), 409-428.  doi: 10.1017/S0308210517000452.  Google Scholar  R. Shivaji, I. Sim and B. Son, A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball, J. Math. Anal. Appl., 445 (2017), 459-475.  doi: 10.1016/j.jmaa.2016.07.029.  Google Scholar  J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal., 98 (1987), 229-249.  doi: 10.1007/BF00251173.  Google Scholar
  Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713  Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024  Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084  Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150  Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055  Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177  Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432  Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042  Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623  Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301  Manas Kar, Jenn-Nan Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2011-2024. doi: 10.3934/dcdsb.2020188  Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267  Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729  Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079  Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783  Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95  John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83  Gennaro Infante. Eigenvalues and positive solutions of odes involving integral boundary conditions. Conference Publications, 2005, 2005 (Special) : 436-442. doi: 10.3934/proc.2005.2005.436  Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155  Shanming Ji, Jingxue Yin, Yutian Li. Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2411-2439. doi: 10.3934/dcds.2018100

2020 Impact Factor: 1.916