June  2020, 19(6): 3083-3091. doi: 10.3934/cpaa.2020133

A Lusin type result

Department of Mathematics, University of Trento, via Sommarive 14, 38123 Trento, Italy

Received  May 2019 Revised  January 2020 Published  March 2020

By using the property known as Federer-Fleming conjecture (cf. [7, 3.1.17]), recently resolved by B. Bojarski, we prove the following Lusin type result:
Theorem. Let
$ A\subset {\mathbb{R}}^n $
be a measurable set and let
$ k $
be a nonnegative integer. Assume that to each
$ x\in A $
corresponds a polynomial
$ P_x: {\mathbb{R}}^n\to {\mathbb{R}} $
of degree less or equal to
$ k+1 $
such that
$ \begin{equation*} {\rm{ap}}\lim\limits_{x\to a}\frac{(D^\alpha P_x)(x)-(D^\alpha P_a)(x)}{\vert x-a\vert} = 0 \end{equation*} $
holds for all
$ \alpha\in {\mathbb{N}}^n $
such that
$ \vert\alpha\vert\leq k $
, at a.e.
$ a\in A $
. Then, for each
$ \varepsilon >0 $
, there exists
$ \varphi\in C^{k+1}( {\mathbb{R}}^n) $
such that
$ {\mathcal L}^n \bigg(A\setminus \bigcap\limits_{\vert\alpha\vert\leq k+1}\{x\in A : D^\alpha\varphi (x) = (D^\alpha P_x)(x)\}\bigg)\leq\varepsilon. $
We will use such a theorem to provide a simple new proof of a well-known property of Sobolev functions.
Citation: Silvano Delladio. A Lusin type result. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3083-3091. doi: 10.3934/cpaa.2020133
References:
[1]

B. Bojarski, Differentiation of Measurable Functions and Whitney-Luzin Type Structure Theorems, Helsinki University of Technology Institute of Mathematics Research Reports, Vol. A572, 2009. Available from: http://math.tkk.fi/reports/a572.pdf. Google Scholar

[2]

B. Bojarski, Sobolev spaces and averaging I, Proc. A. Razmadze Math. Inst., 164 (2014), 19-44.   Google Scholar

[3]

B. BojarskiP. Hajlasz and P. Strzelecki, Improved $C^{k, \lambda}$ approximation of higher order Sobolev functions in norm and capacity, Indiana Univ. Math. J., 51 (2002), 507-540.  doi: 10.1512/iumj.2002.51.2162.  Google Scholar

[4]

S. Delladio, A note on some topological properties of sets with finite perimeter, Glasg. Math. J., 58 (2016), 637-647.  doi: 10.1017/S0017089515000385.  Google Scholar

[5]

S. Delladio, The tangency of a $C^1$ smooth submanifold with respect to a non-involutive $C^1$ distribution has no superdensity points, Indiana Univ. Math. J., 68 (2019), 393-412.  doi: 10.1512/iumj.2019.68.7549.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992.  Google Scholar

[7]

H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.  Google Scholar

[8]

R. F. Gariepy and W. P. Ziemer, Modern Real Analysis, PWS Publishing Company, 1995.  Google Scholar

[9]

R. Shakarchi and E. M. Stein, Real Analysis (measure theory, integration and Hilbert spaces), Princeton University Press, Princeton and Oxford, 2005.  Google Scholar

[10]

W. P. Ziemer, Weakly Differentiable Functions, GTM 120, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

B. Bojarski, Differentiation of Measurable Functions and Whitney-Luzin Type Structure Theorems, Helsinki University of Technology Institute of Mathematics Research Reports, Vol. A572, 2009. Available from: http://math.tkk.fi/reports/a572.pdf. Google Scholar

[2]

B. Bojarski, Sobolev spaces and averaging I, Proc. A. Razmadze Math. Inst., 164 (2014), 19-44.   Google Scholar

[3]

B. BojarskiP. Hajlasz and P. Strzelecki, Improved $C^{k, \lambda}$ approximation of higher order Sobolev functions in norm and capacity, Indiana Univ. Math. J., 51 (2002), 507-540.  doi: 10.1512/iumj.2002.51.2162.  Google Scholar

[4]

S. Delladio, A note on some topological properties of sets with finite perimeter, Glasg. Math. J., 58 (2016), 637-647.  doi: 10.1017/S0017089515000385.  Google Scholar

[5]

S. Delladio, The tangency of a $C^1$ smooth submanifold with respect to a non-involutive $C^1$ distribution has no superdensity points, Indiana Univ. Math. J., 68 (2019), 393-412.  doi: 10.1512/iumj.2019.68.7549.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992.  Google Scholar

[7]

H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.  Google Scholar

[8]

R. F. Gariepy and W. P. Ziemer, Modern Real Analysis, PWS Publishing Company, 1995.  Google Scholar

[9]

R. Shakarchi and E. M. Stein, Real Analysis (measure theory, integration and Hilbert spaces), Princeton University Press, Princeton and Oxford, 2005.  Google Scholar

[10]

W. P. Ziemer, Weakly Differentiable Functions, GTM 120, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[13]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[14]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (81)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]