June  2020, 19(6): 3093-3112. doi: 10.3934/cpaa.2020134

Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

2. 

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China

* Corresponding author

Received  June 2019 Revised  November 2019 Published  March 2020

Fund Project: This project is supported by the National Natural Science Foundation of China (No. 11671031 and No. 11971061) and the Fundamental Research Funds for the Central Universities FRF-BR-17-013A

This paper is concerned with the initial boundary value problem of a nonlocal parabolic equation. By establishing the comparison principle and studying the long-time behavior of its flow, we find the criteria for finite time blow-up and global existence of solutions respectively, which in particular includes the results of arbitrarily high energy initial data. We also characterize the asymptotic profile to both solutions vanishing at infinity and blowing up in finite time.

Citation: Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134
References:
[1]

T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, vol. 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Phys. D, 227 (2007), 142-148.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[3]

R. Chill and A. Fiorenza, Convergence and decay rate to equilibrium of bounded solutions of quasilinear parabolic equations, J. Differ. Equ., 228 (2006), 611-632.  doi: 10.1016/j.jde.2006.02.009.  Google Scholar

[4]

C. CortazarM. del Pino and M. Elgueta, The problem of uniqueness of the limit in a semilinear heat equation, Commun. Partial Differ. Equ., 24 (1999), 2147-2172.  doi: 10.1080/03605309908821497.  Google Scholar

[5]

F. DicksteinN. MizoguchiP. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var. Partial Differ. Equ., 42 (2011), 547-562.  doi: 10.1007/s00526-011-0397-8.  Google Scholar

[6]

Z. Dong and J. Zhou, Global existence and finite time blow-up for a class of thin-film equation, Z. Angew. Math. Phys., 68 (2017), 17. doi: 10.1007/s00033-017-0835-3.  Google Scholar

[7]

C. EscuderoF. Gazzola and I. Peral, Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian, J. Math. Pures Appl., 103 (2015), 924-957.  doi: 10.1016/j.matpur.2014.09.007.  Google Scholar

[8]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schr$\ddot{o}$dinger-Hartree equation with a harmonic potential, Nonlinear Anal. Real World Appl., 31 (2016), 132-145.  doi: 10.1016/j.nonrwa.2016.01.012.  Google Scholar

[9]

H. Fujita, On the nonlinear equations $\Delta u + e^u = 0$ and $\partial v/\partial t = \Delta v + e^v$, B. Am. Math. Soc., 75 (1969), 132-136.  doi: 10.1090/S0002-9904-1969-12175-0.  Google Scholar

[10]

J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.  Google Scholar

[11]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integral Equ., 18 (2005), 961-990.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1998.  Google Scholar

[13]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.   Google Scholar

[14]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. Ⅱ. General proof of blow-up and asymptotics of runaway, Eur. J. Appl. Math., 6 (1995), 201-224.  doi: 10.1017/S0956792500001807.  Google Scholar

[15]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au+F(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[16]

X. Li and B. Liu, Vaccum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[17]

X. Li and B. Liu, Finite time blow-up and global existence for the nonlocal complex Ginzburg-Landau equation, J. Math. Anal. Appl., 466 (2018), 961-985.  doi: 10.1016/j.jmaa.2018.06.038.  Google Scholar

[18]

B. Liu and L. Ma, Invariant sets and the blow up threshold for a nonlocal equation of parabolic type, Nonlinear Anal. -Theor., 110 (2014), 141-156.  doi: 10.1016/j.na.2014.08.004.  Google Scholar

[19]

B. Liu and L. Ma, Blow up threshold for a parabolic type equation involving space integral and variational structure, Commun. Pure Appl. Anal., 14 (2015), 2169-2183.  doi: 10.3934/cpaa.2015.14.2169.  Google Scholar

[20]

L. Ma, Global existence and blow-up results for a classical semilinear parabolic equation, Chin. Ann. Math. Ser. B, 34 (2013), 587-592.  doi: 10.1007/s11401-013-0778-8.  Google Scholar

[21]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl., 91 (2009), 49-79.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[22]

C. Miao and J. Zhang, On global solution to the Klein-Gordon-Hartree equation below energy space, J. Differ. Equ., 250 (2011), 3418-3447.  doi: 10.1016/j.jde.2010.12.010.  Google Scholar

[23]

C. Miao and J. Zhang, Energy scattering for a Klein-Gordon equation with a cubic convolution, J. Differ. Equ., 257 (2014), 2178-2224.  doi: 10.1016/j.jde.2014.05.036.  Google Scholar

[24]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction diffusion equations, J. Differ. Equ., 235 (2007), 219-261.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[25]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[26]

P. Quittner, Boundedness of trajectories of parabolic equations and stationary solutions via dynamical methods, Differ. Integral Equ., 7 (1994), 1547-1556.   Google Scholar

[27]

P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math., 29 (2003), 757-799.   Google Scholar

[28]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhauser Advanced Text, Basel/Boston/Berlin, 2007.  Google Scholar

[29]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[30]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Jpn., 17 (1972), 173-193.   Google Scholar

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[32]

J. ZhangX. LiY. Wu and L. Caccetta, Stability of standing waves for the Klein-Gordon-Hartree equation, Appl. Anal., 95 (2016), 1000-1012.  doi: 10.1080/00036811.2015.1047832.  Google Scholar

[33]

G. Xu and J. Zhou, Global existence and blow-up of solutions to a class of nonlocal parabolic equations, Comput. Math. Appl., 78 (2019), 979-996.  doi: 10.1016/j.camwa.2019.03.018.  Google Scholar

[34]

J. Zhou, Blow-up and lifespan of solutions to a nonlocal parabolic equation at arbitrary initial energy level, Appl. Math. Lett., 78 (2018), 118-125.  doi: 10.1016/j.aml.201B.11.013.  Google Scholar

show all references

References:
[1]

T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes, vol. 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Phys. D, 227 (2007), 142-148.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[3]

R. Chill and A. Fiorenza, Convergence and decay rate to equilibrium of bounded solutions of quasilinear parabolic equations, J. Differ. Equ., 228 (2006), 611-632.  doi: 10.1016/j.jde.2006.02.009.  Google Scholar

[4]

C. CortazarM. del Pino and M. Elgueta, The problem of uniqueness of the limit in a semilinear heat equation, Commun. Partial Differ. Equ., 24 (1999), 2147-2172.  doi: 10.1080/03605309908821497.  Google Scholar

[5]

F. DicksteinN. MizoguchiP. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var. Partial Differ. Equ., 42 (2011), 547-562.  doi: 10.1007/s00526-011-0397-8.  Google Scholar

[6]

Z. Dong and J. Zhou, Global existence and finite time blow-up for a class of thin-film equation, Z. Angew. Math. Phys., 68 (2017), 17. doi: 10.1007/s00033-017-0835-3.  Google Scholar

[7]

C. EscuderoF. Gazzola and I. Peral, Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian, J. Math. Pures Appl., 103 (2015), 924-957.  doi: 10.1016/j.matpur.2014.09.007.  Google Scholar

[8]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schr$\ddot{o}$dinger-Hartree equation with a harmonic potential, Nonlinear Anal. Real World Appl., 31 (2016), 132-145.  doi: 10.1016/j.nonrwa.2016.01.012.  Google Scholar

[9]

H. Fujita, On the nonlinear equations $\Delta u + e^u = 0$ and $\partial v/\partial t = \Delta v + e^v$, B. Am. Math. Soc., 75 (1969), 132-136.  doi: 10.1090/S0002-9904-1969-12175-0.  Google Scholar

[10]

J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.  Google Scholar

[11]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integral Equ., 18 (2005), 961-990.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1998.  Google Scholar

[13]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.   Google Scholar

[14]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. Ⅱ. General proof of blow-up and asymptotics of runaway, Eur. J. Appl. Math., 6 (1995), 201-224.  doi: 10.1017/S0956792500001807.  Google Scholar

[15]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au+F(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[16]

X. Li and B. Liu, Vaccum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503. doi: 10.1063/1.5004668.  Google Scholar

[17]

X. Li and B. Liu, Finite time blow-up and global existence for the nonlocal complex Ginzburg-Landau equation, J. Math. Anal. Appl., 466 (2018), 961-985.  doi: 10.1016/j.jmaa.2018.06.038.  Google Scholar

[18]

B. Liu and L. Ma, Invariant sets and the blow up threshold for a nonlocal equation of parabolic type, Nonlinear Anal. -Theor., 110 (2014), 141-156.  doi: 10.1016/j.na.2014.08.004.  Google Scholar

[19]

B. Liu and L. Ma, Blow up threshold for a parabolic type equation involving space integral and variational structure, Commun. Pure Appl. Anal., 14 (2015), 2169-2183.  doi: 10.3934/cpaa.2015.14.2169.  Google Scholar

[20]

L. Ma, Global existence and blow-up results for a classical semilinear parabolic equation, Chin. Ann. Math. Ser. B, 34 (2013), 587-592.  doi: 10.1007/s11401-013-0778-8.  Google Scholar

[21]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl., 91 (2009), 49-79.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[22]

C. Miao and J. Zhang, On global solution to the Klein-Gordon-Hartree equation below energy space, J. Differ. Equ., 250 (2011), 3418-3447.  doi: 10.1016/j.jde.2010.12.010.  Google Scholar

[23]

C. Miao and J. Zhang, Energy scattering for a Klein-Gordon equation with a cubic convolution, J. Differ. Equ., 257 (2014), 2178-2224.  doi: 10.1016/j.jde.2014.05.036.  Google Scholar

[24]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction diffusion equations, J. Differ. Equ., 235 (2007), 219-261.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[25]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[26]

P. Quittner, Boundedness of trajectories of parabolic equations and stationary solutions via dynamical methods, Differ. Integral Equ., 7 (1994), 1547-1556.   Google Scholar

[27]

P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math., 29 (2003), 757-799.   Google Scholar

[28]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhauser Advanced Text, Basel/Boston/Berlin, 2007.  Google Scholar

[29]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[30]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Jpn., 17 (1972), 173-193.   Google Scholar

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[32]

J. ZhangX. LiY. Wu and L. Caccetta, Stability of standing waves for the Klein-Gordon-Hartree equation, Appl. Anal., 95 (2016), 1000-1012.  doi: 10.1080/00036811.2015.1047832.  Google Scholar

[33]

G. Xu and J. Zhou, Global existence and blow-up of solutions to a class of nonlocal parabolic equations, Comput. Math. Appl., 78 (2019), 979-996.  doi: 10.1016/j.camwa.2019.03.018.  Google Scholar

[34]

J. Zhou, Blow-up and lifespan of solutions to a nonlocal parabolic equation at arbitrary initial energy level, Appl. Math. Lett., 78 (2018), 118-125.  doi: 10.1016/j.aml.201B.11.013.  Google Scholar

[1]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[2]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[3]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[4]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[5]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[6]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[7]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[8]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[9]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[10]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[11]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[12]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[13]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[14]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[15]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[16]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[17]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[18]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[19]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[20]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (100)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]