• Previous Article
    Regular measurable backward compact random attractor for $ g $-Navier-Stokes equation
  • CPAA Home
  • This Issue
  • Next Article
    Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity
June  2020, 19(6): 3113-3136. doi: 10.3934/cpaa.2020135

Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

* Corresponding author

Received  June 2019 Revised  December 2019 Published  March 2020

In this article we study the large-time behavior of perturbative classical solutions to the Fokker-Planck-Boltzmann equation for non-cutoff hard potentials. When the initial data is a small pertubation of an equilibrium state, global existence and temporal decay estimates of classical solutions are established.

Citation: Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135
References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ., 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[2]

M. BisiJ. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Statist. Phys., 118 (2005), 301-331.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[3]

R. E. Caflisch, The Boltzmann equation with a soft potential-II. Nonlinear, spatially-periodic, Commun. Math. Phys., 74 (1980), 97-109.   Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[5]

R. J. DiPerna and P. L. Lions, On the Fokker-Planck-Boltzmann equation, Commun. Math. Phys., 120 (1988), 1-23.   Google Scholar

[6]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[7]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[8]

R. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[9]

R. Duan and R. M. Strain, Optimal Time Decay of the Vlasov–Poisson–Boltzmann System in $\mathbb{R}^ 3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[10]

R. DuanT. Yang and H. Zhao, The Vlasov–Poisson–Boltzmann system in the whole space: The hard potential case, J. Differ. Equ., 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[11]

R. DuanT. Yang and H. Zhao, The Vlasov–Poisson–Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[12]

R. Duan and S. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Commun. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[13]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847.  doi: 10.1090/S0894-0347-2011-00697-8.  Google Scholar

[14]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349-2384.  doi: 10.1016/j.aim.2011.05.005.  Google Scholar

[15]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[16]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Commun. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[17]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169 (2003), 305-353.  doi: 10.1007/s00205-003-0262-9.  Google Scholar

[18]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[19]

K. Hamdache, Estimations uniformes des solutions de l'equation de Boltzmann par les methodes de viscosité artificielle et de diffusion de Fokker-Planck, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 187–190.  Google Scholar

[20]

H. L. Li and A. Matsumura, Behaviour of the Fokker–Planck–Boltzmann equation near a Maxwellian, Arch. Ration. Mech. Anal., 189 (2008), 1-44.  doi: 10.1007/s00205-007-0057-5.  Google Scholar

[21]

T. P. LiuT. Yang and S. H. Yu, Energy method for Boltzmann equation, Physica D, 188 (2004), 178-192.  doi: 10.1016/j.physd.2003.07.011.  Google Scholar

[22]

T. P. Liu and S. H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Commun. Math. Phys., 246 (2004), 133-179.  doi: 10.1007/s00220-003-1030-2.  Google Scholar

[23]

R. M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, Kinet. Relat. Models, 5 (2012), 583-613.  doi: 10.3934/krm.2012.5.583.  Google Scholar

[24]

R. M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft potentials, Commun. Math. Phys., 300 (2010), 529-597.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[25]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[26]

L. XiongT. Wang and L. Wang, Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation, Kinet. Relat. Models, 7 (2014), 169-194.  doi: 10.3934/krm.2014.7.169.  Google Scholar

[27]

T. YangH. Yu and and H. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[28]

T. Yang and H. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Commun. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

show all references

References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ., 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[2]

M. BisiJ. Carrillo and G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Statist. Phys., 118 (2005), 301-331.  doi: 10.1007/s10955-004-8785-5.  Google Scholar

[3]

R. E. Caflisch, The Boltzmann equation with a soft potential-II. Nonlinear, spatially-periodic, Commun. Math. Phys., 74 (1980), 97-109.   Google Scholar

[4]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[5]

R. J. DiPerna and P. L. Lions, On the Fokker-Planck-Boltzmann equation, Commun. Math. Phys., 120 (1988), 1-23.   Google Scholar

[6]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[7]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[8]

R. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[9]

R. Duan and R. M. Strain, Optimal Time Decay of the Vlasov–Poisson–Boltzmann System in $\mathbb{R}^ 3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[10]

R. DuanT. Yang and H. Zhao, The Vlasov–Poisson–Boltzmann system in the whole space: The hard potential case, J. Differ. Equ., 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[11]

R. DuanT. Yang and H. Zhao, The Vlasov–Poisson–Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[12]

R. Duan and S. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Commun. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[13]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847.  doi: 10.1090/S0894-0347-2011-00697-8.  Google Scholar

[14]

P. T. Gressman and R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349-2384.  doi: 10.1016/j.aim.2011.05.005.  Google Scholar

[15]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.  Google Scholar

[16]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Commun. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[17]

Y. Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal., 169 (2003), 305-353.  doi: 10.1007/s00205-003-0262-9.  Google Scholar

[18]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[19]

K. Hamdache, Estimations uniformes des solutions de l'equation de Boltzmann par les methodes de viscosité artificielle et de diffusion de Fokker-Planck, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 187–190.  Google Scholar

[20]

H. L. Li and A. Matsumura, Behaviour of the Fokker–Planck–Boltzmann equation near a Maxwellian, Arch. Ration. Mech. Anal., 189 (2008), 1-44.  doi: 10.1007/s00205-007-0057-5.  Google Scholar

[21]

T. P. LiuT. Yang and S. H. Yu, Energy method for Boltzmann equation, Physica D, 188 (2004), 178-192.  doi: 10.1016/j.physd.2003.07.011.  Google Scholar

[22]

T. P. Liu and S. H. Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Commun. Math. Phys., 246 (2004), 133-179.  doi: 10.1007/s00220-003-1030-2.  Google Scholar

[23]

R. M. Strain, Optimal time decay of the non cut-off Boltzmann equation in the whole space, Kinet. Relat. Models, 5 (2012), 583-613.  doi: 10.3934/krm.2012.5.583.  Google Scholar

[24]

R. M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft potentials, Commun. Math. Phys., 300 (2010), 529-597.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[25]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[26]

L. XiongT. Wang and L. Wang, Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation, Kinet. Relat. Models, 7 (2014), 169-194.  doi: 10.3934/krm.2014.7.169.  Google Scholar

[27]

T. YangH. Yu and and H. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[28]

T. Yang and H. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Commun. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

[1]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[2]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[3]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[4]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[5]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[6]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[7]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[8]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[9]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[10]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[11]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[12]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[13]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[14]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[15]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[16]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[17]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[18]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks & Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[19]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[20]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (53)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]