June  2020, 19(6): 3159-3187. doi: 10.3934/cpaa.2020137

Radial solutions for a class of Hénon type systems with partial interference with the spectrum

1. 

Departamento de Matemática, Universidade Federal Rural de Pernambuco, 50740-560, Recife - PE, Brazil

2. 

Departamento de Matemática - Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, 13565-905, São Carlos - SP, Brazil

3. 

Departamento de Matemática - Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora - MG, Brazil

4. 

Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, 45662-900, Ilhéus - BA, Brazil

* Corresponding author

Received  June 2019 Revised  November 2019 Published  March 2020

Fund Project: O. H. Miyagaki by CNPq/Brazil (Processo 307061/2018-3) and Fapemig/Brazil (CEX APQ-00063/15), F. R. Pereira by INCT-mat

We investigate the existence of radial solutions for a class of Hénon type systems with nonlinearities reaching the critical growth and interacting with the spectrum of the operator with the possibility of double resonance. The proof is made using variational methods, combining Brézis and Nirenberg arguments with Ni compactness result and Rabinowitz linking theorem.

Citation: Eudes. M. Barboza, Olimpio H. Miyagaki, Fábio R. Pereira, Cláudia R. Santana. Radial solutions for a class of Hénon type systems with partial interference with the spectrum. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3159-3187. doi: 10.3934/cpaa.2020137
References:
[1]

C. O. AlvesD. C. de Morais Filho and O. H. Miyagaki, Multiple solutions for an elliptic system on bounded and unbounded domains, Nonlinear Anal., 56 (2004), 555-568.  doi: 10.1016/j.na.2003.10.004.  Google Scholar

[2]

C. O. AlvesD. C. de Morais Filho and M. A. S. Souto, On systems of equations involving subcritical or critical sobolev exponents, Nonlinear Anal. Theory Meth. Appl., 42 (2000), 771-787.  doi: 10.1016/S0362-546X(99)00121-2.  Google Scholar

[3]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467.  doi: 10.1515/ans-2004-0406.  Google Scholar

[4]

S. BaeH. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations, Proc. R. Soc. Edinb., 137A (2007), 1135-1155.  doi: 10.1017/S0308210505000727.  Google Scholar

[5]

E. M. Barboza, O. H. Miyagaki, F. R. Pereira and C. R. Santana, Hénon equation with nonlinearities involving Sobolev critical growth in $H^1_{0, {\rm{rad}}}(B_1)$, to appear. Google Scholar

[6]

E. M. BarbozaJ. M. do Ó and B. Ribeiro, Hénon type equations with jumping nonlinearities involving critical growth, Adv. Differ. Equ., 24 (2019), 713-744.   Google Scholar

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[8]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[9]

J. Byeon and Z. Wang, On the Hénon equation: asymptotic profile of ground states Ⅰ, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 23 (2006), 803-828.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[10]

J. Byeon and Z. Wang, On the Hénon equation: asymptotic profile of ground states Ⅱ, J. Differ. Equ., 216 (2005), 78-108.  doi: 10.1016/j.jde.2005.02.018.  Google Scholar

[11]

D. M. Cao and S. G. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[12]

D. M. CaoS. G. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480.  doi: 10.1093/imamat/hxn035.  Google Scholar

[13]

A. CapozziD. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 2 (1985), 463-470.   Google Scholar

[14]

P. C. CarriãoD. G. de Figueiredo and O. H. Miyagaki, Quasilinear elliptic equations of the Hénon-type: existence of non-radial solution, Commun. Contemp. Math., 11 (2009), 783-798.  doi: 10.1142/S0219199709003594.  Google Scholar

[15]

P. ClementD. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Meth. Nonlinear Anal., 7 (1966), 133-170.  doi: 10.12775/TMNA.1996.006.  Google Scholar

[16]

D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical sobolev exponent degrees, Commun. Partial Differ. Equ., 24 (1999), 1537-1553.  doi: 10.1080/03605309908821473.  Google Scholar

[17]

L. F. O. FariaO. H. MiyagakiF. R. PereiraM. Squassina and C. Zhang, The Brézis-Nirenberg problem for nonlocal systems, Adv. Nonlinear Anal., 5 (2015), 85-103.  doi: 10.1515/anona-2015-0114.  Google Scholar

[18]

F. Gladiali and M. Grossi, Linear perturbations for the critical Hénon problem, Differ. Integral Equ., 28 (2015), 733-752.   Google Scholar

[19]

M. Hénon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophys., 24 (1973), 229-238.   Google Scholar

[20]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differ. Equ., 247 (2009), 1311-1333.  doi: 10.1016/j.jde.2009.06.008.  Google Scholar

[21]

S. Li and S. Peng, Asymptotic behavior on the Hénon equation with supercritical exponent, Sci. China Ser. A., 52 (2009), 2185-2194.  doi: 10.1007/s11425-009-0094-7.  Google Scholar

[22]

W. Long and J. Yang, Existence for critical Hénon-type equations, Differ. Integral Equ., 25 (2012), 567-578.   Google Scholar

[23]

O. H. Miyagaki and F. R. Pereira, Existence results for non-local elliptic systems with nonlinearities interacting with the spectrum, Adv. Differ. Equ., 23 (2018), 555-580.   Google Scholar

[24]

W. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[25]

R. S. Palais, The Principle of Symmetric Criticality, Commun. Math. Phys., 69 (1979), 19-30.   Google Scholar

[26]

S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin. English Ser., 22 (2006), 137-162.  doi: 10.1007/s10255-005-0293-0.  Google Scholar

[27]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Vol. 65, CBMS, American Mathematical Society, 1986. doi: 10.1090/cbms/065.  Google Scholar

[28]

S. Secchi, The Brézis-Nirenberg problem for the Hénon equation: ground state solutions, Adv. Nonlinear Stud., 12 (2012), 1-15.  doi: 10.1515/ans-2012-0209.  Google Scholar

[29]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differ. Equ., 23 (2005), 301-326.  doi: 10.1007/s00526-004-0302-9.  Google Scholar

[30]

R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal., 2 (2013), 235-270.  doi: 10.1515/anona-2013-0008.  Google Scholar

[31]

R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Meth. Nonlinear Anal., 43 (2014), 251-267.  doi: 10.12775/TMNA.2014.015.  Google Scholar

[32]

R. Servadei and E. Valdinoci, A Brézis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Math., 12 (2013), 2445-2464.  doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brézis-Nirenberg result for the fractional laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

D. SmetsJ. Su and M. Willem, Non radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.  doi: 10.1142/S0219199702000725.  Google Scholar

show all references

References:
[1]

C. O. AlvesD. C. de Morais Filho and O. H. Miyagaki, Multiple solutions for an elliptic system on bounded and unbounded domains, Nonlinear Anal., 56 (2004), 555-568.  doi: 10.1016/j.na.2003.10.004.  Google Scholar

[2]

C. O. AlvesD. C. de Morais Filho and M. A. S. Souto, On systems of equations involving subcritical or critical sobolev exponents, Nonlinear Anal. Theory Meth. Appl., 42 (2000), 771-787.  doi: 10.1016/S0362-546X(99)00121-2.  Google Scholar

[3]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467.  doi: 10.1515/ans-2004-0406.  Google Scholar

[4]

S. BaeH. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations, Proc. R. Soc. Edinb., 137A (2007), 1135-1155.  doi: 10.1017/S0308210505000727.  Google Scholar

[5]

E. M. Barboza, O. H. Miyagaki, F. R. Pereira and C. R. Santana, Hénon equation with nonlinearities involving Sobolev critical growth in $H^1_{0, {\rm{rad}}}(B_1)$, to appear. Google Scholar

[6]

E. M. BarbozaJ. M. do Ó and B. Ribeiro, Hénon type equations with jumping nonlinearities involving critical growth, Adv. Differ. Equ., 24 (2019), 713-744.   Google Scholar

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[8]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[9]

J. Byeon and Z. Wang, On the Hénon equation: asymptotic profile of ground states Ⅰ, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 23 (2006), 803-828.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[10]

J. Byeon and Z. Wang, On the Hénon equation: asymptotic profile of ground states Ⅱ, J. Differ. Equ., 216 (2005), 78-108.  doi: 10.1016/j.jde.2005.02.018.  Google Scholar

[11]

D. M. Cao and S. G. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[12]

D. M. CaoS. G. Peng and S. Yan, Asymptotic behaviour of ground state solutions for the Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480.  doi: 10.1093/imamat/hxn035.  Google Scholar

[13]

A. CapozziD. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 2 (1985), 463-470.   Google Scholar

[14]

P. C. CarriãoD. G. de Figueiredo and O. H. Miyagaki, Quasilinear elliptic equations of the Hénon-type: existence of non-radial solution, Commun. Contemp. Math., 11 (2009), 783-798.  doi: 10.1142/S0219199709003594.  Google Scholar

[15]

P. ClementD. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Meth. Nonlinear Anal., 7 (1966), 133-170.  doi: 10.12775/TMNA.1996.006.  Google Scholar

[16]

D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical sobolev exponent degrees, Commun. Partial Differ. Equ., 24 (1999), 1537-1553.  doi: 10.1080/03605309908821473.  Google Scholar

[17]

L. F. O. FariaO. H. MiyagakiF. R. PereiraM. Squassina and C. Zhang, The Brézis-Nirenberg problem for nonlocal systems, Adv. Nonlinear Anal., 5 (2015), 85-103.  doi: 10.1515/anona-2015-0114.  Google Scholar

[18]

F. Gladiali and M. Grossi, Linear perturbations for the critical Hénon problem, Differ. Integral Equ., 28 (2015), 733-752.   Google Scholar

[19]

M. Hénon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophys., 24 (1973), 229-238.   Google Scholar

[20]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differ. Equ., 247 (2009), 1311-1333.  doi: 10.1016/j.jde.2009.06.008.  Google Scholar

[21]

S. Li and S. Peng, Asymptotic behavior on the Hénon equation with supercritical exponent, Sci. China Ser. A., 52 (2009), 2185-2194.  doi: 10.1007/s11425-009-0094-7.  Google Scholar

[22]

W. Long and J. Yang, Existence for critical Hénon-type equations, Differ. Integral Equ., 25 (2012), 567-578.   Google Scholar

[23]

O. H. Miyagaki and F. R. Pereira, Existence results for non-local elliptic systems with nonlinearities interacting with the spectrum, Adv. Differ. Equ., 23 (2018), 555-580.   Google Scholar

[24]

W. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[25]

R. S. Palais, The Principle of Symmetric Criticality, Commun. Math. Phys., 69 (1979), 19-30.   Google Scholar

[26]

S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin. English Ser., 22 (2006), 137-162.  doi: 10.1007/s10255-005-0293-0.  Google Scholar

[27]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Vol. 65, CBMS, American Mathematical Society, 1986. doi: 10.1090/cbms/065.  Google Scholar

[28]

S. Secchi, The Brézis-Nirenberg problem for the Hénon equation: ground state solutions, Adv. Nonlinear Stud., 12 (2012), 1-15.  doi: 10.1515/ans-2012-0209.  Google Scholar

[29]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differ. Equ., 23 (2005), 301-326.  doi: 10.1007/s00526-004-0302-9.  Google Scholar

[30]

R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal., 2 (2013), 235-270.  doi: 10.1515/anona-2013-0008.  Google Scholar

[31]

R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Meth. Nonlinear Anal., 43 (2014), 251-267.  doi: 10.12775/TMNA.2014.015.  Google Scholar

[32]

R. Servadei and E. Valdinoci, A Brézis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Math., 12 (2013), 2445-2464.  doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brézis-Nirenberg result for the fractional laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

D. SmetsJ. Su and M. Willem, Non radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.  doi: 10.1142/S0219199702000725.  Google Scholar

[1]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[10]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (89)
  • HTML views (67)
  • Cited by (0)

[Back to Top]