June  2020, 19(6): 3209-3222. doi: 10.3934/cpaa.2020139

Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl

Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

* Corresponding author

Received  June 2019 Revised  November 2019 Published  March 2020

Fund Project: The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800

In this paper, we prove Hardy-Leray inequality for three-dimensional solenoidal (i.e., divergence-free) fields with the best constant. To derive the best constant, we impose the axisymmetric condition only on the swirl components. This partially complements the former work by O. Costin and V. Maz'ya [4] on the sharp Hardy-Leray inequality for axisymmetric divergence-free fields.

Citation: Naoki Hamamoto, Futoshi Takahashi. Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3209-3222. doi: 10.3934/cpaa.2020139
References:
[1]

K. Abe and G. Seregin, Axisymmetric flows in the exterior of a cylinder, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics. doi: 10.1017/prm.2018.121.  Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[3]

L. A. CaffarelliR. Kohn and and L. Nirenberg, First order interpolation inequalities with weights, Composito Math., 53 (1984), 259-275.   Google Scholar

[4]

O. Costin and V. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calc. Var. Partial Differ. Equ., 32 (2008), 523-532.  doi: 10.1007/s00526-007-0151-4.  Google Scholar

[5]

C. Efthimiou and C. Frye, Spherical Harmonics in $p$ Dimensions, World Scientific Publishing Company, Singapore, 2014. doi: 10.1142/9134.  Google Scholar

[6]

N. Hamamoto, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Anal., 191 (2020), Art 111634, 14pp. doi: 10.1016/j.na.2019.111634.  Google Scholar

[7]

N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-free vector fields, to appear in Math. Ann. doi: 10.1007/s00208-019-01945-x.  Google Scholar

[8] G. H. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.   Google Scholar
[9]

M. Korobkov, K. Pileckas and R. Russo, The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl, J. Math. Fluid Mech., 17 (2015), 287–293. Addendum: J. Math. Fluid Mech., 18 (2016), 207. doi: 10.1007/s00021-015-0202-0.  Google Scholar

[10]

G. KochN. NadirashviliG. Seregin and ">V. , Liouville theorems for the Navier-Stokes equations and applications, Acta. Math., 203 (2009), 83-105.  doi: 10.1007/s11511-009-0039-6. &title=Liouville theorems for the Navier-Stokes equations and applications" target="_blank"> Google Scholar

[11]

O. A. , Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations and applications, Zap. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155–177.  Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), 1-82.   Google Scholar

[13]

Y. Liu, and P. Zhang, On the global well-posedness of 3-D axi-symmetric Navier-Stokes system with small swirl component, Calc. Var. Partial Differ. Equ., 57 (2018), 31 pages. doi: 10.1007/s00526-017-1288-4.  Google Scholar

[14]

V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition, in Grundlehren der Mathematischen Wissenschaften, Vol. 342, Springer, Heidelberg (2011) xxviii+866. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[16]

P. Zhang and T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Not. IMRN, 3 (2013), 610-642.  doi: 10.1093/imrn/rns232.  Google Scholar

show all references

References:
[1]

K. Abe and G. Seregin, Axisymmetric flows in the exterior of a cylinder, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics. doi: 10.1017/prm.2018.121.  Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[3]

L. A. CaffarelliR. Kohn and and L. Nirenberg, First order interpolation inequalities with weights, Composito Math., 53 (1984), 259-275.   Google Scholar

[4]

O. Costin and V. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calc. Var. Partial Differ. Equ., 32 (2008), 523-532.  doi: 10.1007/s00526-007-0151-4.  Google Scholar

[5]

C. Efthimiou and C. Frye, Spherical Harmonics in $p$ Dimensions, World Scientific Publishing Company, Singapore, 2014. doi: 10.1142/9134.  Google Scholar

[6]

N. Hamamoto, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Anal., 191 (2020), Art 111634, 14pp. doi: 10.1016/j.na.2019.111634.  Google Scholar

[7]

N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-free vector fields, to appear in Math. Ann. doi: 10.1007/s00208-019-01945-x.  Google Scholar

[8] G. H. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.   Google Scholar
[9]

M. Korobkov, K. Pileckas and R. Russo, The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl, J. Math. Fluid Mech., 17 (2015), 287–293. Addendum: J. Math. Fluid Mech., 18 (2016), 207. doi: 10.1007/s00021-015-0202-0.  Google Scholar

[10]

G. KochN. NadirashviliG. Seregin and ">V. , Liouville theorems for the Navier-Stokes equations and applications, Acta. Math., 203 (2009), 83-105.  doi: 10.1007/s11511-009-0039-6. &title=Liouville theorems for the Navier-Stokes equations and applications" target="_blank"> Google Scholar

[11]

O. A. , Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations and applications, Zap. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155–177.  Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), 1-82.   Google Scholar

[13]

Y. Liu, and P. Zhang, On the global well-posedness of 3-D axi-symmetric Navier-Stokes system with small swirl component, Calc. Var. Partial Differ. Equ., 57 (2018), 31 pages. doi: 10.1007/s00526-017-1288-4.  Google Scholar

[14]

V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition, in Grundlehren der Mathematischen Wissenschaften, Vol. 342, Springer, Heidelberg (2011) xxviii+866. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[16]

P. Zhang and T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Not. IMRN, 3 (2013), 610-642.  doi: 10.1093/imrn/rns232.  Google Scholar

[1]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[2]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[3]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[4]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[5]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[6]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[7]

Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131

[8]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[9]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[10]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[11]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[12]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[13]

Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651

[14]

Artur Avila, Sébastien Gouëzel, Masato Tsujii. Smoothness of solenoidal attractors. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 21-35. doi: 10.3934/dcds.2006.15.21

[15]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[16]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[17]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[18]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[19]

Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223

[20]

Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]