June  2020, 19(6): 3209-3222. doi: 10.3934/cpaa.2020139

Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl

Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

* Corresponding author

Received  June 2019 Revised  November 2019 Published  March 2020

Fund Project: The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800

In this paper, we prove Hardy-Leray inequality for three-dimensional solenoidal (i.e., divergence-free) fields with the best constant. To derive the best constant, we impose the axisymmetric condition only on the swirl components. This partially complements the former work by O. Costin and V. Maz'ya [4] on the sharp Hardy-Leray inequality for axisymmetric divergence-free fields.

Citation: Naoki Hamamoto, Futoshi Takahashi. Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3209-3222. doi: 10.3934/cpaa.2020139
References:
[1]

K. Abe and G. Seregin, Axisymmetric flows in the exterior of a cylinder, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics. doi: 10.1017/prm.2018.121.  Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[3]

L. A. CaffarelliR. Kohn and and L. Nirenberg, First order interpolation inequalities with weights, Composito Math., 53 (1984), 259-275.   Google Scholar

[4]

O. Costin and V. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calc. Var. Partial Differ. Equ., 32 (2008), 523-532.  doi: 10.1007/s00526-007-0151-4.  Google Scholar

[5]

C. Efthimiou and C. Frye, Spherical Harmonics in $p$ Dimensions, World Scientific Publishing Company, Singapore, 2014. doi: 10.1142/9134.  Google Scholar

[6]

N. Hamamoto, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Anal., 191 (2020), Art 111634, 14pp. doi: 10.1016/j.na.2019.111634.  Google Scholar

[7]

N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-free vector fields, to appear in Math. Ann. doi: 10.1007/s00208-019-01945-x.  Google Scholar

[8] G. H. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.   Google Scholar
[9]

M. Korobkov, K. Pileckas and R. Russo, The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl, J. Math. Fluid Mech., 17 (2015), 287–293. Addendum: J. Math. Fluid Mech., 18 (2016), 207. doi: 10.1007/s00021-015-0202-0.  Google Scholar

[10]

G. KochN. NadirashviliG. Seregin and ">V. , Liouville theorems for the Navier-Stokes equations and applications, Acta. Math., 203 (2009), 83-105.  doi: 10.1007/s11511-009-0039-6. &title=Liouville theorems for the Navier-Stokes equations and applications" target="_blank"> Google Scholar

[11]

O. A. , Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations and applications, Zap. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155–177.  Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), 1-82.   Google Scholar

[13]

Y. Liu, and P. Zhang, On the global well-posedness of 3-D axi-symmetric Navier-Stokes system with small swirl component, Calc. Var. Partial Differ. Equ., 57 (2018), 31 pages. doi: 10.1007/s00526-017-1288-4.  Google Scholar

[14]

V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition, in Grundlehren der Mathematischen Wissenschaften, Vol. 342, Springer, Heidelberg (2011) xxviii+866. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[16]

P. Zhang and T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Not. IMRN, 3 (2013), 610-642.  doi: 10.1093/imrn/rns232.  Google Scholar

show all references

References:
[1]

K. Abe and G. Seregin, Axisymmetric flows in the exterior of a cylinder, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics. doi: 10.1017/prm.2018.121.  Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.   Google Scholar

[3]

L. A. CaffarelliR. Kohn and and L. Nirenberg, First order interpolation inequalities with weights, Composito Math., 53 (1984), 259-275.   Google Scholar

[4]

O. Costin and V. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calc. Var. Partial Differ. Equ., 32 (2008), 523-532.  doi: 10.1007/s00526-007-0151-4.  Google Scholar

[5]

C. Efthimiou and C. Frye, Spherical Harmonics in $p$ Dimensions, World Scientific Publishing Company, Singapore, 2014. doi: 10.1142/9134.  Google Scholar

[6]

N. Hamamoto, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Anal., 191 (2020), Art 111634, 14pp. doi: 10.1016/j.na.2019.111634.  Google Scholar

[7]

N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curl-free vector fields, to appear in Math. Ann. doi: 10.1007/s00208-019-01945-x.  Google Scholar

[8] G. H. HardyJ. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.   Google Scholar
[9]

M. Korobkov, K. Pileckas and R. Russo, The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl, J. Math. Fluid Mech., 17 (2015), 287–293. Addendum: J. Math. Fluid Mech., 18 (2016), 207. doi: 10.1007/s00021-015-0202-0.  Google Scholar

[10]

G. KochN. NadirashviliG. Seregin and ">V. , Liouville theorems for the Navier-Stokes equations and applications, Acta. Math., 203 (2009), 83-105.  doi: 10.1007/s11511-009-0039-6. &title=Liouville theorems for the Navier-Stokes equations and applications" target="_blank"> Google Scholar

[11]

O. A. , Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations and applications, Zap. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 155–177.  Google Scholar

[12]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., 12 (1933), 1-82.   Google Scholar

[13]

Y. Liu, and P. Zhang, On the global well-posedness of 3-D axi-symmetric Navier-Stokes system with small swirl component, Calc. Var. Partial Differ. Equ., 57 (2018), 31 pages. doi: 10.1007/s00526-017-1288-4.  Google Scholar

[14]

V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition, in Grundlehren der Mathematischen Wissenschaften, Vol. 342, Springer, Heidelberg (2011) xxviii+866. doi: 10.1007/978-3-642-15564-2.  Google Scholar

[15]

M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[16]

P. Zhang and T. Zhang, Global axi-symmetric solutions to 3-D Navier-Stokes system, Int. Math. Res. Not. IMRN, 3 (2013), 610-642.  doi: 10.1093/imrn/rns232.  Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (68)
  • HTML views (100)
  • Cited by (1)

Other articles
by authors

[Back to Top]