-
Previous Article
Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow
- CPAA Home
- This Issue
-
Next Article
Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl
Ricci curvature of conformal deformation on compact 2-manifolds
Department of Mathematics, Chosun University, Kwangju, 61452, Republic of Korea |
In this paper, we consider Ricci curvature of conformal deformation on compact 2-manifolds. And we prove that, by the conformal deformation, the resulting manifold is an Einstein manifold.
References:
[1] |
T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982. |
[2] |
M. S. Berger,
Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.
|
[3] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
H. Ge and W. Jiang,
Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.
doi: 10.4134/JKMS.j170561. |
[5] |
J. L. Kazdan and F. W. Warner,
Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.
doi: 10.2307/1971012. |
[6] |
B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983. |
[7] |
R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. Google Scholar |
show all references
References:
[1] |
T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982. |
[2] |
M. S. Berger,
Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.
|
[3] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
H. Ge and W. Jiang,
Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.
doi: 10.4134/JKMS.j170561. |
[5] |
J. L. Kazdan and F. W. Warner,
Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.
doi: 10.2307/1971012. |
[6] |
B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983. |
[7] |
R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. Google Scholar |
[1] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[2] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[3] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[4] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
[5] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[6] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[7] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]