In this paper, we consider Ricci curvature of conformal deformation on compact 2-manifolds. And we prove that, by the conformal deformation, the resulting manifold is an Einstein manifold.
Citation: |
[1] |
T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982.
![]() ![]() |
[2] |
M. S. Berger, Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.
![]() ![]() |
[3] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-540-74311-8.![]() ![]() ![]() |
[4] |
H. Ge and W. Jiang, Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.
doi: 10.4134/JKMS.j170561.![]() ![]() ![]() |
[5] |
J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.
doi: 10.2307/1971012.![]() ![]() ![]() |
[6] |
B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.
![]() ![]() |
[7] |
R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986.
![]() |