• Previous Article
    Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow
  • CPAA Home
  • This Issue
  • Next Article
    Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl
June  2020, 19(6): 3223-3231. doi: 10.3934/cpaa.2020140

Ricci curvature of conformal deformation on compact 2-manifolds

Department of Mathematics, Chosun University, Kwangju, 61452, Republic of Korea

* Corresponding author

Received  June 2019 Revised  December 2019 Published  March 2020

Fund Project: The first author was supported by Chosun University Research Fund 2018

In this paper, we consider Ricci curvature of conformal deformation on compact 2-manifolds. And we prove that, by the conformal deformation, the resulting manifold is an Einstein manifold.

Citation: Yoon-Tae Jung, Soo-Young Lee, Eun-Hee Choi. Ricci curvature of conformal deformation on compact 2-manifolds. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3223-3231. doi: 10.3934/cpaa.2020140
References:
[1]

T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982.  Google Scholar

[2]

M. S. Berger, Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.   Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

H. Ge and W. Jiang, Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.  doi: 10.4134/JKMS.j170561.  Google Scholar

[5]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.  doi: 10.2307/1971012.  Google Scholar

[6]

B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.  Google Scholar

[7]

R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. Google Scholar

show all references

References:
[1]

T. Aubin, Nonlinear Analysis on Manifolds, Springer-Verlag, New York, 1982.  Google Scholar

[2]

M. S. Berger, Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differ. Geom., 5 (1971), 325-332.   Google Scholar

[3]

A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

H. Ge and W. Jiang, Kazdan-Warner equation on infinite graph, J. Korean Math. Soc., 55 (2018), 1091-1101.  doi: 10.4134/JKMS.j170561.  Google Scholar

[5]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.  doi: 10.2307/1971012.  Google Scholar

[6]

B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.  Google Scholar

[7]

R. Walter, Real and Complex Analysis, McGraw-Hill, Singapore, 1986. Google Scholar

[1]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[2]

Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214

[3]

Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303

[4]

Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027

[5]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

[6]

Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467

[7]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[8]

Luciano Pandolfi. Traction, deformation and velocity of deformation in a viscoelastic string. Evolution Equations & Control Theory, 2013, 2 (3) : 471-493. doi: 10.3934/eect.2013.2.471

[9]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[10]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[11]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[12]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[13]

Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649

[14]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[15]

Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016

[16]

Igor Rivin and Jean-Marc Schlenker. The Schlafli formula in Einstein manifolds with boundary. Electronic Research Announcements, 1999, 5: 18-23.

[17]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[18]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[19]

Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103

[20]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]