June  2020, 19(6): 3233-3244. doi: 10.3934/cpaa.2020141

Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow

1. 

School of Mathematical Sciences, MOE-LSC and SHL-MAC, , Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, , Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author

Received  June 2019 Revised  November 2019 Published  March 2020

Fund Project: This research was partially supported by National Natural Science Foundation of China (NNSFC) under Grant No. 11631008

In this paper, we study the formation of singularities in a finite time for the solution of the boundary layer equations in the two-dimensional incompressible heat conducting flow. We obtain that the first order spacial derivative of the solution blows up in a finite time for the thermal boundary layer problem, for a kind of data which are analytic in the tangential variable but do not satisfy the Oleinik monotonicity condition, by using a Lyapunov functional approach. It is observed that the buoyancy coming from the temperature difference in the flow may destabilize the thermal boundary layer.

Citation: Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141
References:
[1]

R. AlexandreY. G. WangC. J. Xu and T. Yang, Well posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745-784.  doi: 10.1090/S0894-0347-2014-00813-4.  Google Scholar

[2]

D. ChenY. Wang and Z. Zhang, Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 35 (2018), 1119-1142.  doi: 10.1016/j.anihpc.2017.11.001.  Google Scholar

[3]

W. E and B. Engquist, Blowup of solutions of the unsteady Prandtl's equation, Commun. Pure Appl. Math., 50 (1997), 1287-1293.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4.  Google Scholar

[4]

D. Gérard-Varet and E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., 23 (2010), 591-609.  doi: 10.1090/S0894-0347-09-00652-3.  Google Scholar

[5]

D. Gérard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotoncity, Ann. Sci. Éc. Norm. Supér., 48 (2015), 1273–1325. doi: 10.24033/asens.2270.  Google Scholar

[6]

Y. Guo and T. Nguyen, A note on the Prandtl boundary layers, Commun. Pure Appl. Math., 64 (2011), 1416-1438.  doi: 10.1002/cpa.20377.  Google Scholar

[7]

I. KukavicaV. Vicol and F. Wang, The van Dommelen and Shen singularity in the Prandtl equations, Commun. Pure Appl. Math., 307 (2017), 288-311.  doi: 10.1016/j.aim.2016.11.013.  Google Scholar

[8]

M. C. LombardoM. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987-1004.  doi: 10.1137/S0036141002412057.  Google Scholar

[9]

W. Li and T. Yang, Well-posedness in Gevrey function space for the Prandtl equations with non-degenerate critical points, J. Eur. Math. Soc., 22 (2020), 717-775.  doi: 10.4171/jems/931.  Google Scholar

[10]

C. J. Liu and T. Yang, Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay, J. Math. Pure Appl., 108 (2017), 150-162.  doi: 10.1016/j.matpur.2016.10.014.  Google Scholar

[11]

N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683-1741.  doi: 10.1002/cpa.21595.  Google Scholar

[12]

O. A. Oleinik, The Prandtl system of equations in boundary layer theory, Soviet Math. Dokl., 4 (1963), 583-586.   Google Scholar

[13]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[14]

L. Prandtl, Über Flüssigkeitsbewegungen bei sehr kleiner Reibung, Verh. III Intern. Math. Kongr., Heidelberg, (1904), 485–491. Google Scholar

[15]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅰ. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461.  doi: 10.1007/s002200050304.  Google Scholar

[16]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅱ. Construction of the Navier-Stokes solution, Commun. Math. Phys., 192 (1998), 463-491.  doi: 10.1007/s002200050305.  Google Scholar

[17]

H. Schlichting and K. Gersten., Boundary Layer Theory, 9$^th$ edition, Springer, Berlin, Heidelberg, 2017. doi: 10.1007/978-3-662-52919-5.  Google Scholar

[18]

Z. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88-133.  doi: 10.1016/S0001-8708(03)00046-X.  Google Scholar

[19]

Y. G. Wang and S. Y. Zhu, Mathematical analysis of boundary layers in two-dimensional incompressible viscous heat conducting flows (in Chinese), Sci. Sin. Math., 49 (2019), 267-280.   Google Scholar

[20]

Y. G. Wang and S. Y. Zhu, Well-posedness of the boundary layer equation in incompressible heat conducting flow with analytic datum, to appear in Math. Meth. Appl. Sci.. doi: 10.1002/mma.6226.  Google Scholar

[21]

P. Zhang and Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., 270 (2016), 2591-2615.  doi: 10.1016/j.jfa.2016.01.004.  Google Scholar

show all references

References:
[1]

R. AlexandreY. G. WangC. J. Xu and T. Yang, Well posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745-784.  doi: 10.1090/S0894-0347-2014-00813-4.  Google Scholar

[2]

D. ChenY. Wang and Z. Zhang, Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow, Ann. Inst. Henri Poincare - Anal. Non Lineaire, 35 (2018), 1119-1142.  doi: 10.1016/j.anihpc.2017.11.001.  Google Scholar

[3]

W. E and B. Engquist, Blowup of solutions of the unsteady Prandtl's equation, Commun. Pure Appl. Math., 50 (1997), 1287-1293.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4.  Google Scholar

[4]

D. Gérard-Varet and E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., 23 (2010), 591-609.  doi: 10.1090/S0894-0347-09-00652-3.  Google Scholar

[5]

D. Gérard-Varet and N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotoncity, Ann. Sci. Éc. Norm. Supér., 48 (2015), 1273–1325. doi: 10.24033/asens.2270.  Google Scholar

[6]

Y. Guo and T. Nguyen, A note on the Prandtl boundary layers, Commun. Pure Appl. Math., 64 (2011), 1416-1438.  doi: 10.1002/cpa.20377.  Google Scholar

[7]

I. KukavicaV. Vicol and F. Wang, The van Dommelen and Shen singularity in the Prandtl equations, Commun. Pure Appl. Math., 307 (2017), 288-311.  doi: 10.1016/j.aim.2016.11.013.  Google Scholar

[8]

M. C. LombardoM. Cannone and M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987-1004.  doi: 10.1137/S0036141002412057.  Google Scholar

[9]

W. Li and T. Yang, Well-posedness in Gevrey function space for the Prandtl equations with non-degenerate critical points, J. Eur. Math. Soc., 22 (2020), 717-775.  doi: 10.4171/jems/931.  Google Scholar

[10]

C. J. Liu and T. Yang, Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay, J. Math. Pure Appl., 108 (2017), 150-162.  doi: 10.1016/j.matpur.2016.10.014.  Google Scholar

[11]

N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683-1741.  doi: 10.1002/cpa.21595.  Google Scholar

[12]

O. A. Oleinik, The Prandtl system of equations in boundary layer theory, Soviet Math. Dokl., 4 (1963), 583-586.   Google Scholar

[13]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[14]

L. Prandtl, Über Flüssigkeitsbewegungen bei sehr kleiner Reibung, Verh. III Intern. Math. Kongr., Heidelberg, (1904), 485–491. Google Scholar

[15]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅰ. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461.  doi: 10.1007/s002200050304.  Google Scholar

[16]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅱ. Construction of the Navier-Stokes solution, Commun. Math. Phys., 192 (1998), 463-491.  doi: 10.1007/s002200050305.  Google Scholar

[17]

H. Schlichting and K. Gersten., Boundary Layer Theory, 9$^th$ edition, Springer, Berlin, Heidelberg, 2017. doi: 10.1007/978-3-662-52919-5.  Google Scholar

[18]

Z. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88-133.  doi: 10.1016/S0001-8708(03)00046-X.  Google Scholar

[19]

Y. G. Wang and S. Y. Zhu, Mathematical analysis of boundary layers in two-dimensional incompressible viscous heat conducting flows (in Chinese), Sci. Sin. Math., 49 (2019), 267-280.   Google Scholar

[20]

Y. G. Wang and S. Y. Zhu, Well-posedness of the boundary layer equation in incompressible heat conducting flow with analytic datum, to appear in Math. Meth. Appl. Sci.. doi: 10.1002/mma.6226.  Google Scholar

[21]

P. Zhang and Z. Zhang, Long time well-posedness of Prandtl system with small and analytic initial data, J. Funct. Anal., 270 (2016), 2591-2615.  doi: 10.1016/j.jfa.2016.01.004.  Google Scholar

[1]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[2]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[3]

Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024

[4]

Antonio Algaba, María Díaz, Cristóbal García, Jaume Giné. Analytic integrability around a nilpotent singularity: The non-generic case. Communications on Pure & Applied Analysis, 2020, 19 (1) : 407-423. doi: 10.3934/cpaa.2020021

[5]

X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure & Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419

[6]

Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333

[7]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[8]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[9]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[10]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[11]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[12]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[13]

Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811

[14]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923

[15]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[16]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

[17]

Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020

[18]

Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137

[19]

Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111

[20]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (49)
  • HTML views (76)
  • Cited by (1)

Other articles
by authors

[Back to Top]