-
Previous Article
Stable periodic solutions for Nazarenko's equation
- CPAA Home
- This Issue
-
Next Article
Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow
Some global dynamics of a Lotka-Volterra competition-diffusion-advection system
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
This paper studies some population dynamics of a diffusive Lotka-Volterra competition advection model under no-flux boundary condition. We establish the main results that determine the stability of semi-trivial steady states.
References:
[1] |
I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, Mem. Amer. Math. Soc., 245(1161) (2017).
doi: 10.1090/memo/1161. |
[2] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[3] |
R. S. Cantrell, C. Cosner and Y. Lou,
Advection-mediated coexistence of competing species, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 497-518.
doi: 10.1017/S0308210506000047. |
[4] |
X. F. Chen, R. Hambrock and Y. Lou,
Evolution of conditional dispersal:a reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.
doi: 10.1007/s00285-008-0166-2. |
[5] |
C. Cosner,
Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701. |
[6] |
R. Hambrock and Y. Lou,
The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.
doi: 10.1007/s11538-009-9425-7. |
[7] |
X. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: heterogeneity vs. homogeneity, J. Differ. Equ., 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[8] |
X. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: the general case, J. Differ. Equ., 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[9] |
X. He and W. M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[10] |
X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅱ, Calc. Var. Partial Differ. Equ., 55 (2016), 20.
doi: 10.1007/s00526-016-0964-0. |
[11] |
X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅲ, Calc. Var. Partial Differ. Equ., 56 (2017), 26.
doi: 10.1007/s00526-017-1234-5. |
[12] |
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman, Harlow, 1991. |
[13] |
M. Hirsch,
Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.
doi: 10.1515/crll.1988.383.1. |
[14] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coeffcients, J. Differ. Equ., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[15] |
K. Y. Lam,
Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.
doi: 10.1016/j.jde.2010.08.028. |
[16] |
K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, emphSIAM J. Math. Anal., 44 (2012), 1808–1830.
doi: 10.1137/100819758. |
[17] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[18] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2$^nd$ edition, Springer, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[19] |
P. Zhou and D. Xiao,
Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.
doi: 10.1016/j.jfa.2018.03.006. |
show all references
References:
[1] |
I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, Mem. Amer. Math. Soc., 245(1161) (2017).
doi: 10.1090/memo/1161. |
[2] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[3] |
R. S. Cantrell, C. Cosner and Y. Lou,
Advection-mediated coexistence of competing species, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 497-518.
doi: 10.1017/S0308210506000047. |
[4] |
X. F. Chen, R. Hambrock and Y. Lou,
Evolution of conditional dispersal:a reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.
doi: 10.1007/s00285-008-0166-2. |
[5] |
C. Cosner,
Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701. |
[6] |
R. Hambrock and Y. Lou,
The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.
doi: 10.1007/s11538-009-9425-7. |
[7] |
X. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: heterogeneity vs. homogeneity, J. Differ. Equ., 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[8] |
X. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: the general case, J. Differ. Equ., 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[9] |
X. He and W. M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[10] |
X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅱ, Calc. Var. Partial Differ. Equ., 55 (2016), 20.
doi: 10.1007/s00526-016-0964-0. |
[11] |
X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅲ, Calc. Var. Partial Differ. Equ., 56 (2017), 26.
doi: 10.1007/s00526-017-1234-5. |
[12] |
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman, Harlow, 1991. |
[13] |
M. Hirsch,
Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.
doi: 10.1515/crll.1988.383.1. |
[14] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coeffcients, J. Differ. Equ., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[15] |
K. Y. Lam,
Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.
doi: 10.1016/j.jde.2010.08.028. |
[16] |
K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, emphSIAM J. Math. Anal., 44 (2012), 1808–1830.
doi: 10.1137/100819758. |
[17] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[18] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2$^nd$ edition, Springer, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[19] |
P. Zhou and D. Xiao,
Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.
doi: 10.1016/j.jfa.2018.03.006. |
[1] |
Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 859-875. doi: 10.3934/dcdsb.2019193 |
[2] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[3] |
Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239 |
[4] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[5] |
Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061 |
[6] |
Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290 |
[7] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[8] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[9] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[10] |
Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136 |
[11] |
Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669 |
[12] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[13] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[14] |
Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059 |
[15] |
Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055 |
[16] |
Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175 |
[17] |
De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems and Imaging, 2021, 15 (5) : 951-974. doi: 10.3934/ipi.2021023 |
[18] |
De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037 |
[19] |
Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300 |
[20] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]