June  2020, 19(6): 3245-3255. doi: 10.3934/cpaa.2020142

Some global dynamics of a Lotka-Volterra competition-diffusion-advection system

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

Received  July 2019 Revised  December 2019 Published  March 2020

This paper studies some population dynamics of a diffusive Lotka-Volterra competition advection model under no-flux boundary condition. We establish the main results that determine the stability of semi-trivial steady states.

Citation: Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142
References:
[1]

I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, Mem. Amer. Math. Soc., 245(1161) (2017). doi: 10.1090/memo/1161.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[4]

X. F. ChenR. Hambrock and Y. Lou, Evolution of conditional dispersal:a reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.  doi: 10.1007/s00285-008-0166-2.  Google Scholar

[5]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[6]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[7]

X. He and W. M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: heterogeneity vs. homogeneity, J. Differ. Equ., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[8]

X. He and W. M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: the general case, J. Differ. Equ., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[9]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[10]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅱ, Calc. Var. Partial Differ. Equ., 55 (2016), 20. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[11]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅲ, Calc. Var. Partial Differ. Equ., 56 (2017), 26. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[12]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman, Harlow, 1991.  Google Scholar

[13]

M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.  doi: 10.1515/crll.1988.383.1.  Google Scholar

[14]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Differ. Equ., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[15]

K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[16]

K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, emphSIAM J. Math. Anal., 44 (2012), 1808–1830. doi: 10.1137/100819758.  Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[18]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2$^nd$ edition, Springer, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

show all references

References:
[1]

I. Averill, K. Y. Lam and Y. Lou, The role of advection in a two-species competition model: a bifurcation approach, Mem. Amer. Math. Soc., 245(1161) (2017). doi: 10.1090/memo/1161.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[4]

X. F. ChenR. Hambrock and Y. Lou, Evolution of conditional dispersal:a reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.  doi: 10.1007/s00285-008-0166-2.  Google Scholar

[5]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[6]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[7]

X. He and W. M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: heterogeneity vs. homogeneity, J. Differ. Equ., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[8]

X. He and W. M. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: the general case, J. Differ. Equ., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[9]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Commun. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[10]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅱ, Calc. Var. Partial Differ. Equ., 55 (2016), 20. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[11]

X. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources Ⅲ, Calc. Var. Partial Differ. Equ., 56 (2017), 26. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[12]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser. 247, Longman, Harlow, 1991.  Google Scholar

[13]

M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.  doi: 10.1515/crll.1988.383.1.  Google Scholar

[14]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coeffcients, J. Differ. Equ., 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[15]

K. Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[16]

K. Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, emphSIAM J. Math. Anal., 44 (2012), 1808–1830. doi: 10.1137/100819758.  Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equ., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[18]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2$^nd$ edition, Springer, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

[1]

Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 859-875. doi: 10.3934/dcdsb.2019193

[2]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020197

[3]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[4]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[5]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[6]

Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290

[7]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[8]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[9]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[10]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[11]

Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669

[12]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[13]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[14]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[15]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[16]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[17]

De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037

[18]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[19]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[20]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (104)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]