We consider the semilinear wave equation with time-dependent damping
$ \partial_{tt}u-\Delta u +\mu (1+t)^{-\beta} \partial_t u = |u|^p, \quad (t, x)\in (0, \infty)\times D^c, $
where
$ u(t, x) \left(\mbox{or } \frac{\partial u}{\partial n^+}(t, x)\right) = b(t)f(x)\, \, \mbox{on}\, \, (0, \infty)\times \partial D, $
where
Citation: |
[1] | H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo., 13 (1966), 109-124. doi: 10.15083/00039873. |
[2] | R. Ikehata, Global existence of solutions for semilinear damped wave equation in 2-D exterior domain, J. Differ. Equ., 200 (2004), 53-68. doi: 10.1016/j.jde.2003.08.009. |
[3] | R. Ikehata, Two dimensional exterior mixed problem for semilinear damped wave equations, J. Math. Anal. Appl., 301 (2005), 366-377. doi: 10.1016/j.jmaa.2004.07.028. |
[4] | M. Jleli and B. Samet, New blow-up results for nonlinear boundary value problems in exterior domains, Nonlinear Anal., 178 (2019), 348-365. doi: 10.1016/j.na.2018.09.003. |
[5] | N. Laia and S. Yin, Finite time blow-up for a kind of initial-boundary value problem of semilinear damped wave equation, Math. Meth. Appl. Sci., 40 (2017), 1223-1230. doi: 10.1002/mma.4046. |
[6] | J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307-4320. doi: 10.3934/dcds.2012.32.4307. |
[7] | E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362. |
[8] | K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math., 34 (2011), 327-343. |
[9] | T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains, Nonlinear Anal., 70 (2009), 3696-3701. doi: 10.1016/j.na.2008.07.025. |
[10] | K. Ono, Decay estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl., 286 (2003), 540-562. doi: 10.1016/S0022-247X(03)00489-X. |
[11] | G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489. doi: 10.1006/jdeq.2000.3933. |
[12] | Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. R. Soc. Edinb. Sect. A, 131 (2001), 451-475. doi: 10.1017/S0308210500000950. |
[13] | Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris., 333 (2001), 109-114. doi: 10.1016/S0764-4442(01)01999-1. |