July  2020, 19(7): 3885-3900. doi: 10.3934/cpaa.2020143

Blow-up for semilinear wave equations with time-dependent damping in an exterior domain

Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia

* Corresponding author

Received  July 2019 Revised  December 2019 Published  April 2020

Fund Project: B. Samet is supported by Researchers Supporting Project RSP-2019/4, King Saud University, Riyadh, Saudi Arabia

We consider the semilinear wave equation with time-dependent damping
$ \partial_{tt}u-\Delta u +\mu (1+t)^{-\beta} \partial_t u = |u|^p, \quad (t, x)\in (0, \infty)\times D^c, $
where
$ D^c = \mathbb{R}^N\backslash D $
,
$ D $
is the closed unit ball in
$ \mathbb{R}^N $
,
$ N\geq 2 $
,
$ \mu>0 $
,
$ p>1 $
and
$ -1<\beta<1 $
. The considered equation is investigated under the boundary conditions:
$ u(t, x) \left(\mbox{or } \frac{\partial u}{\partial n^+}(t, x)\right) = b(t)f(x)\, \, \mbox{on}\, \, (0, \infty)\times \partial D, $
where
$ n^+ $
is the outward (relative to
$ D^c $
) unit normal on
$ \partial D $
. General blow-up results are established for the considered problems. Moreover, for a certain class of functions
$ b $
, the critical exponent in the sense of Fujita is obtained.
Citation: Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143
References:
[1]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo., 13 (1966), 109-124.  doi: 10.15083/00039873.  Google Scholar

[2]

R. Ikehata, Global existence of solutions for semilinear damped wave equation in 2-D exterior domain, J. Differ. Equ., 200 (2004), 53-68.  doi: 10.1016/j.jde.2003.08.009.  Google Scholar

[3]

R. Ikehata, Two dimensional exterior mixed problem for semilinear damped wave equations, J. Math. Anal. Appl., 301 (2005), 366-377.  doi: 10.1016/j.jmaa.2004.07.028.  Google Scholar

[4]

M. Jleli and B. Samet, New blow-up results for nonlinear boundary value problems in exterior domains, Nonlinear Anal., 178 (2019), 348-365.  doi: 10.1016/j.na.2018.09.003.  Google Scholar

[5]

N. Laia and S. Yin, Finite time blow-up for a kind of initial-boundary value problem of semilinear damped wave equation, Math. Meth. Appl. Sci., 40 (2017), 1223-1230.  doi: 10.1002/mma.4046.  Google Scholar

[6]

J. LinK. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307-4320.  doi: 10.3934/dcds.2012.32.4307.  Google Scholar

[7]

E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[8]

K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math., 34 (2011), 327-343.   Google Scholar

[9]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains, Nonlinear Anal., 70 (2009), 3696-3701.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[10]

K. Ono, Decay estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl., 286 (2003), 540-562.  doi: 10.1016/S0022-247X(03)00489-X.  Google Scholar

[11]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[12]

Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. R. Soc. Edinb. Sect. A, 131 (2001), 451-475.  doi: 10.1017/S0308210500000950.  Google Scholar

[13]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris., 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

show all references

References:
[1]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo., 13 (1966), 109-124.  doi: 10.15083/00039873.  Google Scholar

[2]

R. Ikehata, Global existence of solutions for semilinear damped wave equation in 2-D exterior domain, J. Differ. Equ., 200 (2004), 53-68.  doi: 10.1016/j.jde.2003.08.009.  Google Scholar

[3]

R. Ikehata, Two dimensional exterior mixed problem for semilinear damped wave equations, J. Math. Anal. Appl., 301 (2005), 366-377.  doi: 10.1016/j.jmaa.2004.07.028.  Google Scholar

[4]

M. Jleli and B. Samet, New blow-up results for nonlinear boundary value problems in exterior domains, Nonlinear Anal., 178 (2019), 348-365.  doi: 10.1016/j.na.2018.09.003.  Google Scholar

[5]

N. Laia and S. Yin, Finite time blow-up for a kind of initial-boundary value problem of semilinear damped wave equation, Math. Meth. Appl. Sci., 40 (2017), 1223-1230.  doi: 10.1002/mma.4046.  Google Scholar

[6]

J. LinK. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307-4320.  doi: 10.3934/dcds.2012.32.4307.  Google Scholar

[7]

E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[8]

K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math., 34 (2011), 327-343.   Google Scholar

[9]

T. Ogawa and H. Takeda, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains, Nonlinear Anal., 70 (2009), 3696-3701.  doi: 10.1016/j.na.2008.07.025.  Google Scholar

[10]

K. Ono, Decay estimates for dissipative wave equations in exterior domains, J. Math. Anal. Appl., 286 (2003), 540-562.  doi: 10.1016/S0022-247X(03)00489-X.  Google Scholar

[11]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[12]

Q. S. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. R. Soc. Edinb. Sect. A, 131 (2001), 451-475.  doi: 10.1017/S0308210500000950.  Google Scholar

[13]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris., 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[1]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[2]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[3]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[4]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[5]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[6]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[7]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[8]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[9]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[10]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[11]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[12]

Qingquan Chang, Dandan Li, Chunyou Sun. Random attractors for stochastic time-dependent damped wave equation with critical exponents. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2793-2824. doi: 10.3934/dcdsb.2020033

[13]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[14]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[15]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[18]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[19]

Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351

[20]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

2018 Impact Factor: 0.925

Article outline

[Back to Top]