June  2020, 19(6): 3257-3281. doi: 10.3934/cpaa.2020144

Stable periodic solutions for Nazarenko's equation

1. 

Bolyai Institute, University of Szeged, 1 Aradi vértanúk tere, Szeged, Hungary

2. 

MTA-SZTE Analysis and Stochastics Research Group, , Bolyai Institute, University of Szeged, 1 Aradi vértanúk tere, Szeged, Hungary

* Corresponding author

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008. Gabriella Vas was also supported by the National Research, Development and Innovation Office of Hungary, Grant No. K129322

In 1976 Nazarenko proposed studying the delay differential equation
$ \begin{equation*} \dot{y}(t) = -py(t)+\dfrac{qy(t)}{r+y^{n}(t-\tau)},\qquad t>0, \end{equation*} $
under the assumptions that
$ p,q,r,\tau\in\left(0,\infty\right) $
,
$ n\in\mathbb{N} = \left\{ 1,2,\ldots\right\} $
and
$ q/p>r $
. We show that if
$ \tau $
or
$ n $
is large enough, then the positive periodic solution oscillating slowly about
$ K = \left(q/p-r\right)^{1/n} $
is unique, and the corresponding periodic orbit is asymptotically stable. We also determine the asymptotic shape of the periodic solution as
$ n\rightarrow\infty $
.
Citation: Szandra Beretka, Gabriella Vas. Stable periodic solutions for Nazarenko's equation. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3257-3281. doi: 10.3934/cpaa.2020144
References:
[1]

Y. Cao, Multiexistence of slowly oscillating periodic solutions for differential delay equations, SIAM J. Math. Anal., 26 (1995), 436-445.  doi: 10.1137/0526022.  Google Scholar

[2]

Y. Cao, Uniqueness of periodic solution for differential delay equations, J. Differ. Equ., 128 (1996), 46-57.  doi: 10.1006/jdeq.1996.0088.  Google Scholar

[3]

J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal., 6 (1975), 268-282.  doi: 10.1137/0506028.  Google Scholar

[4]

B. Kennedy and E. Stumpf, Multiple slowly oscillating periodic solutions for $x' (t) = f(x(t- 1))$ with negative feedback, Ann. Polon. Math., 118 (2016), 113-140.  doi: 10.4064/ap3899-10-2016.  Google Scholar

[5]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Model., 35 (2002), 295-301.  doi: 10.1016/S0895-7177(01)00166-2.  Google Scholar

[6] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.   Google Scholar
[7]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian derivative, Nonlinear Anal. Real World Appl., 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.  Google Scholar

[8]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equ., 125 (1996), 441-489.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[9]

V. G. Nazarenko, Influence of delay on auto-oscillations in cell populations, Biofisika, 21 (1976), 352-356.   Google Scholar

[10]

R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Funct. Anal., 19 (1975), 319-338.  doi: 10.1016/0022-1236(75)90061-0.  Google Scholar

[11]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.  doi: 10.1007/BF02417109.  Google Scholar

[12]

R. D. Nussbaum, The range of periods of periodic solutions of $x' (t) = - \alpha f(x(t- 1))$, J. Math. Anal. Appl., 58 (1977), 280-292.  doi: 10.1016/0022-247X(77)90206-2.  Google Scholar

[13]

R. D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of $x'(t) = -g(x(t -1))$, J. Differ. Equ., 34 (1979), 25-54.  doi: 10.1016/0022-0396(79)90016-0.  Google Scholar

[14]

S. Ruan, Delay differential equations in single species dynamics, in Delay differential equations and applications (eds. O. Arino, M. L. Hbid and E. Ait Dads), NATO Sci. Ser. Ⅱ Math. Phys. Chem., Vol. 205, Springer, Dordrecht, (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.  Google Scholar

[15]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model, Nonlinear Anal. Real World Appl., 8 (2007), 1029-1039.  doi: 10.1016/j.nonrwa.2006.06.001.  Google Scholar

[16]

Y. Song and Y. Peng, Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time, J. Comput. Appl. Math., 188 (2006), 256-264.  doi: 10.1016/j.cam.2005.04.017.  Google Scholar

[17]

Y. SongJ. Wei and M. Han, Local and global Hopf bifurcation in a delayed hematopoiesis model, Int. J. Bifurcation Chaos Appl. Sci. Eng., 14 (2004), 3909-3919.  doi: 10.1142/S0218127404011697.  Google Scholar

[18]

H. O. Walther, Contracting return maps for some delay differential equations, in Topics in Functional Differential and Difference Equations (Lisbon, 1999), Fields Inst. Commun., Vol. 29, American Mathematical Society, Providence, RI, (2001), 349–360.  Google Scholar

[19]

Q. Wang, J. Wen, S. Qiu and C. Guo, Numerical oscillations for first-order nonlinear delay differential equations in a hematopoiesis model, Adv. Differ. Equ., (2013), 17. doi: 10.1186/1687-1847-2013-163.  Google Scholar

[20]

J. Wu, Symmetric functional-differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

show all references

References:
[1]

Y. Cao, Multiexistence of slowly oscillating periodic solutions for differential delay equations, SIAM J. Math. Anal., 26 (1995), 436-445.  doi: 10.1137/0526022.  Google Scholar

[2]

Y. Cao, Uniqueness of periodic solution for differential delay equations, J. Differ. Equ., 128 (1996), 46-57.  doi: 10.1006/jdeq.1996.0088.  Google Scholar

[3]

J. L. Kaplan and J. A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal., 6 (1975), 268-282.  doi: 10.1137/0506028.  Google Scholar

[4]

B. Kennedy and E. Stumpf, Multiple slowly oscillating periodic solutions for $x' (t) = f(x(t- 1))$ with negative feedback, Ann. Polon. Math., 118 (2016), 113-140.  doi: 10.4064/ap3899-10-2016.  Google Scholar

[5]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Model., 35 (2002), 295-301.  doi: 10.1016/S0895-7177(01)00166-2.  Google Scholar

[6] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.   Google Scholar
[7]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian derivative, Nonlinear Anal. Real World Appl., 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.  Google Scholar

[8]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equ., 125 (1996), 441-489.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[9]

V. G. Nazarenko, Influence of delay on auto-oscillations in cell populations, Biofisika, 21 (1976), 352-356.   Google Scholar

[10]

R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Funct. Anal., 19 (1975), 319-338.  doi: 10.1016/0022-1236(75)90061-0.  Google Scholar

[11]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.  doi: 10.1007/BF02417109.  Google Scholar

[12]

R. D. Nussbaum, The range of periods of periodic solutions of $x' (t) = - \alpha f(x(t- 1))$, J. Math. Anal. Appl., 58 (1977), 280-292.  doi: 10.1016/0022-247X(77)90206-2.  Google Scholar

[13]

R. D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of $x'(t) = -g(x(t -1))$, J. Differ. Equ., 34 (1979), 25-54.  doi: 10.1016/0022-0396(79)90016-0.  Google Scholar

[14]

S. Ruan, Delay differential equations in single species dynamics, in Delay differential equations and applications (eds. O. Arino, M. L. Hbid and E. Ait Dads), NATO Sci. Ser. Ⅱ Math. Phys. Chem., Vol. 205, Springer, Dordrecht, (2006), 477–517. doi: 10.1007/1-4020-3647-7_11.  Google Scholar

[15]

S. H. Saker and J. O. Alzabut, Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model, Nonlinear Anal. Real World Appl., 8 (2007), 1029-1039.  doi: 10.1016/j.nonrwa.2006.06.001.  Google Scholar

[16]

Y. Song and Y. Peng, Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time, J. Comput. Appl. Math., 188 (2006), 256-264.  doi: 10.1016/j.cam.2005.04.017.  Google Scholar

[17]

Y. SongJ. Wei and M. Han, Local and global Hopf bifurcation in a delayed hematopoiesis model, Int. J. Bifurcation Chaos Appl. Sci. Eng., 14 (2004), 3909-3919.  doi: 10.1142/S0218127404011697.  Google Scholar

[18]

H. O. Walther, Contracting return maps for some delay differential equations, in Topics in Functional Differential and Difference Equations (Lisbon, 1999), Fields Inst. Commun., Vol. 29, American Mathematical Society, Providence, RI, (2001), 349–360.  Google Scholar

[19]

Q. Wang, J. Wen, S. Qiu and C. Guo, Numerical oscillations for first-order nonlinear delay differential equations in a hematopoiesis model, Adv. Differ. Equ., (2013), 17. doi: 10.1186/1687-1847-2013-163.  Google Scholar

[20]

J. Wu, Symmetric functional-differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

Figure 1.  The plot of $ f $ for $ p = 1 $, $ q = 4, $ $ r = 1.5 $ and $ n = 10 $
Figure 2.  An element of $ \mathcal{N}(A,B,\beta,\varepsilon) $
Figure 3.  Upper and lower estimates for the SOP solution $ \bar{x} $ of (1.4) if $ p = 2.8 $, $ q = 6, $ $ r = 1.3 $, $ \tau = 5 $ and $ n = 350 $. For these parameters, $ |\bar{x}(t)-v(t)|<0.54 $ for all $ t\in[0,\bar{\omega}] $
Table 1.  A few parameters for which Theorem 1.1 holds
$ p= $ $ q= $ $ r= $ $ n= $ $ \tau\geq $
2.8 6 1.3 19 5.16
2.8 6.9 0.9 25 2.41
2.8 6.9 0.9 2 23.68
1.9 4.2 0.8 20 3.88
0.7 1.3 0.7 30 8.84
1.9 6.9 0.8 15 8.16
6.6 9.3 0.4 10 2.63
3 5.3 1.3 15 9.71
8.8 5.9 0.5 20 8.52
9 6.4 0.4 5 6.62
9 6.4 0.4 2 16.54
$ p= $ $ q= $ $ r= $ $ n= $ $ \tau\geq $
2.8 6 1.3 19 5.16
2.8 6.9 0.9 25 2.41
2.8 6.9 0.9 2 23.68
1.9 4.2 0.8 20 3.88
0.7 1.3 0.7 30 8.84
1.9 6.9 0.8 15 8.16
6.6 9.3 0.4 10 2.63
3 5.3 1.3 15 9.71
8.8 5.9 0.5 20 8.52
9 6.4 0.4 5 6.62
9 6.4 0.4 2 16.54
[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[7]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[10]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[11]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[12]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[13]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[14]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[18]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (67)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]