June  2020, 19(6): 3367-3385. doi: 10.3934/cpaa.2020149

The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

School of Science, Hainan University, Haikou 570228, China

* Corresponding author

Received  October 2019 Revised  January 2020 Published  March 2020

Fund Project: Shaopeng Xu is supported by Hainan Provincial Natural Science Foundation of China (No.2019RC168)

Chen and Zhang [7] consider the probabilistic Cauchy problem of the fourth order Schrödinger equation
$ \begin{align*} (i\partial_t+\varepsilon\Delta+\Delta^2)u = P_m((\partial_x^\alpha u)_{|\alpha|\leq2},(\partial_x^\alpha \overline{u})_{|\alpha|\leq2}),\ m\geq3, \end{align*} $
where
$ P_m $
is a homogeneous polynomial of degree
$ m $
. The almost sure local well-posedness and small data global existence were obtained in
$ H^s(\mathbb{R}^d) $
with the regularity threshold
$ s_c-1/2 $
when
$ d\geq3 $
, where
$ s_c: = d/2-2/(m-1) $
is the scaling critical regularity. For the lower regularity threshold
$ (d-1)s_c/d $
with
$ m = 2 $
and
$ s_c-\min\{1,d/4\} $
with
$ m\geq3 $
, we get the corresponding well-posedness of the following fourth order nonlinear Schrödinger equation
$ \begin{align*} (i\partial_t+\varepsilon\Delta+\Delta^2)u = P_m((\partial_x^\alpha \overline{u})_{|\alpha|\leq2}),\ m\geq2 \end{align*} $
on
$ {\mathbb{R}}^d $
(
$ d\geq2 $
) with random initial data.
Citation: Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149
References:
[1]

M. Ben-ArtziH. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in Excursions in Harmonic Analysis, Vol. 4, Birkhäuser/Springer, Cham, (2015), 3–25.  Google Scholar

[3]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166 (1994), 1-26.   Google Scholar

[4]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176 (1996), 421-445.   Google Scholar

[5]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. Ⅰ. Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[6]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. Ⅱ. A global existence result, Invent. Math., 173 (2008), 477-496.  doi: 10.1007/s00222-008-0123-0.  Google Scholar

[7]

J. M. Chen and S. Zhang, Random Data Cauchy Problem for the Fourth Order Schrödinger Equation with the Second Order Derivative Nonlinearities, Nonlinear Anal., 190 (2020), 111608, 23. doi: 10.1016/j.na.2019.111608.  Google Scholar

[8]

J. CollianderJ. DelortC. Kenig and G. Staffilani, Bilinear estimates and applications to 2{D} NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[9]

V. D. Dinh, Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437.   Google Scholar

[10]

B. DodsonJ. Lührmann and D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Adv. Math., 347 (2019), 619-676.  doi: 10.1016/j.aim.2019.02.001.  Google Scholar

[11]

K. B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A., 369 (1979), 105-114.   Google Scholar

[12]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. Henri Poincare Anal. Non Lineaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[13]

C. C. HaoL. Hsiao and B. X. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar

[14]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in {$H^1(\mathbb{T}^3)$}, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar

[15]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity, preprint, arXiv: 1505.06497. doi: 10.3934/dcds.2016102.  Google Scholar

[16]

H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar

[17]

Z. H. Huo and Y. L. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Commun. Partial Differ. Equ., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[18]

B. IlanG. Fibich and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math, 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[19]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[20]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[21]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on {$\mathbb{R}^3$}, Commun. Partial Differ. Equ., 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[22]

J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on {$\Bbb R^3$}, New York J. Math., 22 (2016), 209-227.   Google Scholar

[23]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[24]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[25]

J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Mathematics Department, Duke University, Durham, N.C., 1976.  Google Scholar

[26]

M. RuzhanskyB. X. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar

[27]

Y. Z. Wang, Global well-posedness for the generalised fourth-order Schrödinger equation, Bull. Aust. Math. Soc., 85 (2012), 371-379.  doi: 10.1017/S0004972711003327.  Google Scholar

[28]

B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differ. Equ., 232 (2007), 36-73.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[29]

B. X. WangL. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces {$E^\lambda_{p, q}$} and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

show all references

References:
[1]

M. Ben-ArtziH. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in Excursions in Harmonic Analysis, Vol. 4, Birkhäuser/Springer, Cham, (2015), 3–25.  Google Scholar

[3]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166 (1994), 1-26.   Google Scholar

[4]

J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176 (1996), 421-445.   Google Scholar

[5]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. Ⅰ. Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[6]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. Ⅱ. A global existence result, Invent. Math., 173 (2008), 477-496.  doi: 10.1007/s00222-008-0123-0.  Google Scholar

[7]

J. M. Chen and S. Zhang, Random Data Cauchy Problem for the Fourth Order Schrödinger Equation with the Second Order Derivative Nonlinearities, Nonlinear Anal., 190 (2020), 111608, 23. doi: 10.1016/j.na.2019.111608.  Google Scholar

[8]

J. CollianderJ. DelortC. Kenig and G. Staffilani, Bilinear estimates and applications to 2{D} NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar

[9]

V. D. Dinh, Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437.   Google Scholar

[10]

B. DodsonJ. Lührmann and D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Adv. Math., 347 (2019), 619-676.  doi: 10.1016/j.aim.2019.02.001.  Google Scholar

[11]

K. B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A., 369 (1979), 105-114.   Google Scholar

[12]

M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. Henri Poincare Anal. Non Lineaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar

[13]

C. C. HaoL. Hsiao and B. X. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar

[14]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in {$H^1(\mathbb{T}^3)$}, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar

[15]

H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity, preprint, arXiv: 1505.06497. doi: 10.3934/dcds.2016102.  Google Scholar

[16]

H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar

[17]

Z. H. Huo and Y. L. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Commun. Partial Differ. Equ., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar

[18]

B. IlanG. Fibich and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math, 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[19]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar

[20]

V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar

[21]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on {$\mathbb{R}^3$}, Commun. Partial Differ. Equ., 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[22]

J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on {$\Bbb R^3$}, New York J. Math., 22 (2016), 209-227.   Google Scholar

[23]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[24]

B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar

[25]

J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Mathematics Department, Duke University, Durham, N.C., 1976.  Google Scholar

[26]

M. RuzhanskyB. X. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar

[27]

Y. Z. Wang, Global well-posedness for the generalised fourth-order Schrödinger equation, Bull. Aust. Math. Soc., 85 (2012), 371-379.  doi: 10.1017/S0004972711003327.  Google Scholar

[28]

B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differ. Equ., 232 (2007), 36-73.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[29]

B. X. WangL. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces {$E^\lambda_{p, q}$} and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

[1]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021205

[2]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[3]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[4]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156

[5]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021122

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[7]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[8]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[11]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[12]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[13]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[14]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[15]

Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033

[16]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[17]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[18]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[19]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[20]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (138)
  • HTML views (92)
  • Cited by (1)

Other articles
by authors

[Back to Top]