Let $ \Omega\subset\mathbb{R}^2 $ be a bounded smooth domain, we study the following anisotropic elliptic problem
$ \begin{cases} -\nabla(a(x)\nabla \upsilon)+a(x)\upsilon = 0& \text{in}\, \, \, \, \, \Omega, \\ \dfrac{\partial \upsilon}{\partial\nu} = e^\upsilon-s\phi_1-h(x) & \text{on}\, \ \, \partial\Omega, \end{cases} $
where $ \nu $ denotes the outer unit normal vector to $ \partial\Omega $, $ h\in C^{0, \alpha}( \partial\Omega) $, $ s>0 $ is a large parameter, $ a(x) $ is a positive smooth function and $ \phi_1 $ is a positive first Steklov eigenfunction. We show that this problem has an unbounded number of solutions for all sufficiently large $ s $, which give a positive answer to a generalization of the Lazer-McKenna conjecture for this case. Moreover, the solutions found exhibit multiple concentration behavior around boundary maxima of $ a(x)\phi_1 $ as $ s\rightarrow+\infty $.
Citation: |
[1] |
A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93 (1973), 231-247.
doi: 10.1007/BF02412022.![]() ![]() ![]() |
[2] |
I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. Ⅱ, North-Holland, Amsterdam, (1991), 641–787.
![]() ![]() |
[3] |
B. Breuer, P. J. McKenna and M. Plum, Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof, J. Differ. Equ., 195 (2003), 243-269.
doi: 10.1016/S0022-0396(03)00186-4.![]() ![]() ![]() |
[4] |
E. N. Dancer and S. Santra, On the superlinear Lazer-McKenna conjecture: the non-homogeneous case, Adv. Differ. Equ., 12 (2007), 961-993.
![]() ![]() |
[5] |
E. N. Dancer and S. Yan, On the Lazer-McKenna conjecture involving critical and supercritical exponents, Meth. Appl. Anal., 15, (2008), 97–119.
doi: 10.4310/MAA.2008.v15.n1.a9.![]() ![]() ![]() |
[6] |
E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., 78, (2008), 639–662.
doi: 10.1112/jlms/jdn045.![]() ![]() ![]() |
[7] |
E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, part II, Commun. Partial Differ. Equ., 30 (2005), 1331-1358.
doi: 10.1080/03605300500258865.![]() ![]() ![]() |
[8] |
E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, J. Differ. Equ., 210 (2005), 317-351.
doi: 10.1016/j.jde.2004.07.017.![]() ![]() ![]() |
[9] |
J. Dávila, M. del Pino and M. Musso, Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data, J. Funct. Anal., 227 (2005), 430-490.
doi: 10.1016/j.jfa.2005.06.010.![]() ![]() ![]() |
[10] |
M. del Pino and C. Muñoz, The two-dimensional Lazer-Mckenna conjecture for an exponential nonlinearity, J. Differ. Equ., 231 (2006), 108-134.
doi: 10.1016/j.jde.2006.07.003.![]() ![]() ![]() |
[11] |
D. G. de Figueiredo, P. N. Srikanth and S. Santra, Non-radially symmetric solutions for a superlinear Ambrosetti-Prodi type problem in a ball, Commun. Contemp. Math., 7 (2005), 849-866.
doi: 10.1142/S0219199705001982.![]() ![]() ![]() |
[12] |
O. Druet, The critical Lazer-McKenna conjecture in low dimensions, J. Differ. Equ., 245 (2008), 2199-2242.
doi: 10.1016/j.jde.2008.05.002.![]() ![]() ![]() |
[13] |
A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl., 84 (1981), 282-294.
doi: 10.1016/0022-247X(81)90166-9.![]() ![]() ![]() |
[14] |
Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
[15] |
G. Li, S. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differ. Equ., 28 (2007), 471-508.
doi: 10.1007/s00526-006-0051-z.![]() ![]() ![]() |
[16] |
G. Li, S. Yan and J. Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, part II, J. Differ. Equ., 227 (2006), 301-332.
doi: 10.1016/j.jde.2006.02.011.![]() ![]() ![]() |
[17] |
R. Molle and D. Passaseo, Elliptic equations with jumping nonlinearities involving high eigenvalues, Calc. Var. Partial Differ. Equ., 49 (2014), 861-907.
doi: 10.1007/s00526-013-0603-y.![]() ![]() ![]() |
[18] |
R. Molle and D. Passaseo, Existence and multiplicity of solutions for elliptic equations with jumping nonlinearities, J. Funct. Anal., 259 (2010), 2253-2295.
doi: 10.1016/j.jfa.2010.05.010.![]() ![]() ![]() |
[19] |
R. Molle and D. Passaseo, Multiple solutions for a class of elliptic equations with jumping nonlinearities, Ann. Inst. Henri Poincare Anal. Non Lineaire, 27 (2010), 529-553.
doi: 10.1016/j.anihpc.2009.09.005.![]() ![]() ![]() |
[20] |
B. Ou, A uniqueness theorem for harmonic functions on the upper-half plane, Conform. Geom. Dyn., 4 (2000), 120-125.
doi: 10.1090/S1088-4173-00-00067-9.![]() ![]() ![]() |
[21] |
Y. Wang and L. Wei, Multiple boundary bubbling phenomenon of solutions to a Neumann problem, Adv. Differ. Equ., 13 (2008), 829-856.
![]() ![]() |
[22] |
J. Wei and S. Yan, On a stronger Lazer-McKenna conjecture for Ambrosetti-Prodi type problems, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 9 (2010), 423-457.
![]() ![]() |
[23] |
J. Wei and S. Yan, Lazer-McKenna conjecture: the critical case, J. Funct. Anal., 244 (2007), 639-667.
doi: 10.1016/j.jfa.2006.11.002.![]() ![]() ![]() |
[24] |
H. Yang and Y. Zhang, Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data, Discrete Contin. Dyn. Syst. A, 37 (2017), 5467-5502.
doi: 10.3934/dcds.2017238.![]() ![]() ![]() |
[25] |
L. Zhang, Classification of conformal metrics on $\mathbb{R}^2_+$ with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions, Calc. Var. Partial Differ. Equ., 16 (2003), 405-430.
doi: 10.1007/s005260100155.![]() ![]() ![]() |