-
Previous Article
Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $
- CPAA Home
- This Issue
-
Next Article
The Hardy–Moser–Trudinger inequality via the transplantation of Green functions
General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law
1. | Departamento de Matemática, Universidade Estadual do Centro-Oeste, Guarapuava, PR, CEP 85040-167, Brazil |
2. | Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, CEP 36036-900, Brazil |
In this paper, we give a new and more general sufficient condition for exponential stability of thermoelastic Bresse systems with heat flux given by Cattaneo's law acting in shear and longitudinal motion equations. This condition, which we also prove to be necessary in some special cases, is given by a relation between the constants of the system and generalizes the well-known equal wave speed condition.
References:
[1] |
M. Afilal, A. Guesmia and A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., (2019), 40 pp.
doi: 10.1007/s00245-019-09560-7. |
[2] |
P. R. de Lima and H. D. Fernández Sare, Stability of thermoelastic Bresse systems, Z. Angew. Math. Phys., 70 (2019), 30 pp.
doi: 10.1007/s00033-018-1057-z. |
[3] |
F. Dell'Oro,
Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927.
doi: 10.1016/j.jde.2015.01.025. |
[4] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[5] |
G. Garbugio, Modelagem e Estabilidade Uniforme de Vigas Curvas Termoelásticas, (Portuguese) [Modeling and Uniform Stability of Thermoelastic Curved Beams], Ph.D thesis, Laboratório Nacional de Computação Científica, Petrópolis, Brazil, 2015. Google Scholar |
[6] |
A. Guesmia,
The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement, Arab. J. Math., 8 (2019), 15-41.
doi: 10.1007/s40065-018-0210-z. |
[7] |
S. Kesavan, Functional Analysis, Hindustan Book Agency, New Delhi, 2009.
doi: 10.1007/978-93-86279-42-2. |
[8] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[9] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling of dynamic networks of thin thermoelastic beams, Math. Meth. Appl. Sci., 16 (1993), 327-358.
doi: 10.1002/mma.1670160503. |
[10] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6. |
[11] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall, London, 1999. |
[12] |
M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera,
The stability number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733.
doi: 10.1016/j.jde.2012.07.012. |
show all references
References:
[1] |
M. Afilal, A. Guesmia and A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., (2019), 40 pp.
doi: 10.1007/s00245-019-09560-7. |
[2] |
P. R. de Lima and H. D. Fernández Sare, Stability of thermoelastic Bresse systems, Z. Angew. Math. Phys., 70 (2019), 30 pp.
doi: 10.1007/s00033-018-1057-z. |
[3] |
F. Dell'Oro,
Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927.
doi: 10.1016/j.jde.2015.01.025. |
[4] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[5] |
G. Garbugio, Modelagem e Estabilidade Uniforme de Vigas Curvas Termoelásticas, (Portuguese) [Modeling and Uniform Stability of Thermoelastic Curved Beams], Ph.D thesis, Laboratório Nacional de Computação Científica, Petrópolis, Brazil, 2015. Google Scholar |
[6] |
A. Guesmia,
The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement, Arab. J. Math., 8 (2019), 15-41.
doi: 10.1007/s40065-018-0210-z. |
[7] |
S. Kesavan, Functional Analysis, Hindustan Book Agency, New Delhi, 2009.
doi: 10.1007/978-93-86279-42-2. |
[8] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994.
doi: 10.1007/978-1-4612-0273-8. |
[9] |
J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt,
Modelling of dynamic networks of thin thermoelastic beams, Math. Meth. Appl. Sci., 16 (1993), 327-358.
doi: 10.1002/mma.1670160503. |
[10] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6. |
[11] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall, London, 1999. |
[12] |
M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera,
The stability number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733.
doi: 10.1016/j.jde.2012.07.012. |
[1] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[2] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[3] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[4] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[5] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[6] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[7] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[8] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
[9] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[10] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[11] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[12] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[13] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[14] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[15] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[16] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[17] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[18] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[19] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[20] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]