\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law

  • *Corresponding author

    *Corresponding author 
The first author was supported by CAPES at the Instituto de Matemática of the Universidade Federal do Rio de Janeiro when this work was submitted
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we give a new and more general sufficient condition for exponential stability of thermoelastic Bresse systems with heat flux given by Cattaneo's law acting in shear and longitudinal motion equations. This condition, which we also prove to be necessary in some special cases, is given by a relation between the constants of the system and generalizes the well-known equal wave speed condition.

    Mathematics Subject Classification: Primary: 35B40, 35E15, 35Q74; Secondary: 74B05, 74F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Afilal, A. Guesmia and A. Soufyane, New stability results for a linear thermoelastic Bresse system with second sound, Appl. Math. Optim., (2019), 40 pp. doi: 10.1007/s00245-019-09560-7.
    [2] P. R. de Lima and H. D. Fernández Sare, Stability of thermoelastic Bresse systems, Z. Angew. Math. Phys., 70 (2019), 30 pp. doi: 10.1007/s00033-018-1057-z.
    [3] F. Dell'Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927.  doi: 10.1016/j.jde.2015.01.025.
    [4] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.
    [5] G. Garbugio, Modelagem e Estabilidade Uniforme de Vigas Curvas Termoelásticas, (Portuguese) [Modeling and Uniform Stability of Thermoelastic Curved Beams], Ph.D thesis, Laboratório Nacional de Computação Científica, Petrópolis, Brazil, 2015.
    [6] A. Guesmia, The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement, Arab. J. Math., 8 (2019), 15-41.  doi: 10.1007/s40065-018-0210-z.
    [7] S. Kesavan, Functional Analysis, Hindustan Book Agency, New Delhi, 2009. doi: 10.1007/978-93-86279-42-2.
    [8] J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-0273-8.
    [9] J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Meth. Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.
    [10] Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.
    [11] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall, London, 1999.
    [12] M. L. SantosD. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.
  • 加载中
SHARE

Article Metrics

HTML views(831) PDF downloads(312) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return