
-
Previous Article
The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity
- CPAA Home
- This Issue
-
Next Article
Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $
A lower bound for the principal eigenvalue of fully nonlinear elliptic operators
Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina. |
$ \lim_{p\to \infty}\lambda_{1,p}(\Omega) = \lambda_{1,\infty}(\Omega) = \left(\frac{\pi}{2R}\right)^2 $ |
$ R $ |
$ \Omega\subset {\mathbb R}^n $ |
$ \lambda_{1,p}(\Omega) $ |
$ \lambda_{1,\infty}(\Omega) $ |
$ p $ |
References:
[1] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan,
The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[2] |
H. Berestycki and L. Rossi,
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Commun. Pure Appl. Math., 68 (2015), 1014-1065.
doi: 10.1002/cpa.21536. |
[3] |
I. Birindelli and F. Demengel,
First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differ. Equ., 11 (2006), 91-119.
|
[4] |
I. Birindelli and F. Demengel,
Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 261-287.
|
[5] |
I. Birindelli and F. Demengel,
Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., 352 (2009), 822-835.
doi: 10.1016/j.jmaa.2008.11.012. |
[6] |
I. Birindelli and F. Demengel,
Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators, J. Differ. Equ., 249 (2010), 1089-1110.
doi: 10.1016/j.jde.2010.03.015. |
[7] |
J. Busca, M. J. Esteban and A. Quaas,
Nonlinear eigenvalues and bifurcation problems for {P}ucci's operators, Ann. Inst. Henri Poincare Anal. Non Lineaire, 22 (2005), 187-206.
doi: 10.1016/j.anihpc.2004.05.004. |
[8] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. N.S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[9] |
G. Crasta and I. Fragalà,
Characterization of stadium-like domains via boundary value problems for the infinity Laplacian, Nonlinear Anal., 133 (2016), 228-249.
doi: 10.1016/j.na.2015.12.007. |
[10] |
P. Juutinen,
Principal eigenvalue of a very badly degenerate operator and applications, J. Differ. Equ., 236 (2007), 532-550.
doi: 10.1016/j.jde.2007.01.020. |
[11] |
P. Juutinen, P. Lindqvist and J. J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[12] |
B. Kawohl and J. Horák,
On the geometry of the $p$-Laplacian operator, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 799-813.
doi: 10.3934/dcdss.2017040. |
[13] |
B. Kawohl, S. Krömer and J. Kurtz,
Radial eigenfunctions for the game-theoretic $p$-Laplacian on a ball, Differ. Integral Equ., 27 (2014), 659-670.
|
[14] |
P. J. Martínez-Aparicio, M. Pérez-Llanos and J. D. Rossi,
The limit as $p\rightarrow\infty$ for the eigenvalue problem of the 1-homogeneous $p$-Laplacian, Rev. Mat. Complut., 27 (2014), 241-258.
doi: 10.1007/s13163-013-0124-4. |
[15] |
A. Quaas and B. Sirakov,
Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Adv. Math., 218 (2008), 105-135.
doi: 10.1016/j.aim.2007.12.002. |
show all references
References:
[1] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan,
The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[2] |
H. Berestycki and L. Rossi,
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Commun. Pure Appl. Math., 68 (2015), 1014-1065.
doi: 10.1002/cpa.21536. |
[3] |
I. Birindelli and F. Demengel,
First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differ. Equ., 11 (2006), 91-119.
|
[4] |
I. Birindelli and F. Demengel,
Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 261-287.
|
[5] |
I. Birindelli and F. Demengel,
Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., 352 (2009), 822-835.
doi: 10.1016/j.jmaa.2008.11.012. |
[6] |
I. Birindelli and F. Demengel,
Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators, J. Differ. Equ., 249 (2010), 1089-1110.
doi: 10.1016/j.jde.2010.03.015. |
[7] |
J. Busca, M. J. Esteban and A. Quaas,
Nonlinear eigenvalues and bifurcation problems for {P}ucci's operators, Ann. Inst. Henri Poincare Anal. Non Lineaire, 22 (2005), 187-206.
doi: 10.1016/j.anihpc.2004.05.004. |
[8] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. N.S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[9] |
G. Crasta and I. Fragalà,
Characterization of stadium-like domains via boundary value problems for the infinity Laplacian, Nonlinear Anal., 133 (2016), 228-249.
doi: 10.1016/j.na.2015.12.007. |
[10] |
P. Juutinen,
Principal eigenvalue of a very badly degenerate operator and applications, J. Differ. Equ., 236 (2007), 532-550.
doi: 10.1016/j.jde.2007.01.020. |
[11] |
P. Juutinen, P. Lindqvist and J. J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Ration. Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[12] |
B. Kawohl and J. Horák,
On the geometry of the $p$-Laplacian operator, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 799-813.
doi: 10.3934/dcdss.2017040. |
[13] |
B. Kawohl, S. Krömer and J. Kurtz,
Radial eigenfunctions for the game-theoretic $p$-Laplacian on a ball, Differ. Integral Equ., 27 (2014), 659-670.
|
[14] |
P. J. Martínez-Aparicio, M. Pérez-Llanos and J. D. Rossi,
The limit as $p\rightarrow\infty$ for the eigenvalue problem of the 1-homogeneous $p$-Laplacian, Rev. Mat. Complut., 27 (2014), 241-258.
doi: 10.1007/s13163-013-0124-4. |
[15] |
A. Quaas and B. Sirakov,
Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Adv. Math., 218 (2008), 105-135.
doi: 10.1016/j.aim.2007.12.002. |




[1] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[2] |
Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795 |
[3] |
Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 |
[4] |
Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845 |
[5] |
Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8 |
[6] |
Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081 |
[7] |
Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091 |
[8] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[9] |
Ariel Salort. Lower bounds for Orlicz eigenvalues. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1415-1434. doi: 10.3934/dcds.2021158 |
[10] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
[11] |
Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure and Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163 |
[12] |
Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103 |
[13] |
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 |
[14] |
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213 |
[15] |
Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307 |
[16] |
Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006 |
[17] |
Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61 |
[18] |
Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247 |
[19] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[20] |
Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure and Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]