We give a discrete characterization of the trace of a class of Sobolev spaces on the Sierpinski gasket to the bottom line. This includes the $ L^2 $ domain of the Laplacian as a special case. In addition, for Sobolev spaces of low orders, including the domain of the Dirichlet form, the trace spaces are Besov spaces on the line.
Citation: |
[1] | M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Field, 79 (1988), 543-623. doi: 10.1007/BF00318785. |
[2] | S. Cao and H. Qiu, Sobolev spaces on p.c.f. self-similar sets: critical orders and atomic decompositions, in submission. |
[3] | S. Cao and H. Qiu, Boundary Value Problems for harmonic functions on domains in Sierpinski gaskets, Commun. Pure Appl. Anal., 19 (2020), 1147-1179. doi: 10.3934/cpaa.2020054. |
[4] | S. Cao and H. Qiu, Higher order tangents and Higher order Laplacians on Sierpinski Gasket Type Fractals, preprint, arXiv: 1607.07544. |
[5] | Q. Gu and K. Lau, Dirichlet forms and critical exponents on fractals, preprint, arXiv: 1703.07061. doi: 10.1090/tran/8004. |
[6] | Z. Guo, R. Kogan, H. Qiu and R. S. Strichartz, Boundary value problems for a family of domains in the Sierpinski gasket, Illinois J. Math., 58 (2014), 497-519. |
[7] | M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals, J. Func. Anal., 238 (2006), 578-611. doi: 10.1016/j.jfa.2006.05.012. |
[8] | M. Hinz, D. Koch and M. Meinert, Sobolev spaces and calculus of variations on fractals, preprint, arXiv: 1805.04456. |
[9] | J. Hu and X. Wang, Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals, Studia Math., 177 (2006), 153-172. doi: 10.4064/sm177-2-5. |
[10] | J. Hu and M. Zähle, Potential spaces on fractals, Studia Math., 170 (2005), 259-281. doi: 10.4064/sm170-3-4. |
[11] | M. Ionescu, L. G. Rogers and R. S. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam., 29 (2013), 1159-1190. doi: 10.4171/RMI/752. |
[12] | A. Jonsson, A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z., 250 (2005), 599-609. doi: 10.1007/s00209-005-0767-z. |
[13] | A. Jonsson, Brownian motion on fractals and function spaces, Math. Z., 222 (1996), 495-504. doi: 10.1007/PL00004543. |
[14] | A. Kamont, A discrete characterization of Besov Spaces, Approx. Theory Appl., 13 (1997), 63-77. |
[15] | J. Kigami, A harmonic calculus on the Sierpinski spaces, Jpn. J. Appl. Math., 6 (1989), 259-290. doi: 10.1007/BF03167882. |
[16] | J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721-755. doi: 10.2307/2154402. |
[17] | J. Kigami, Analysis on Fractals, Cambridge University Press, 2001. doi: 10.1017/CBO9780511470943. |
[18] | T. Kumagai, Brownian Motion Penetrating Fractals: An Application of the Trace Theorem of Besov Spaces, J. Func. Anal., 170 (2000), 69-92. doi: 10.1006/jfan.1999.3500. |
[19] | W. Li and R. S. Strichartz, Boundary value problems on a half Sierpinski gasket, J. Fractal Geom., 1 (2014), 1-43. doi: 10.4171/JFG/1. |
[20] | T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc., 83 (1990). doi: 10.1090/memo/0420. |
[21] | J. Owen and R. S. Strichartz, Boundary value problems for harmonic functions on a domain in the Sierpinski gasket, Indiana Univ. Math. J., 61 (2012), 319-335. doi: 10.1512/iumj.2012.61.4539. |
[22] | H. Qiu, Exact spectrum of the Laplacian on a domain in the Sierpinski gasket, J. Funct. Anal., 277 (2019), 806-888. doi: 10.1016/j.jfa.2018.08.018. |
[23] | R. S. Strichartz and C. Wong, The p-Laplacian on the Sierpinski gasket, Nonlinearity, 17 (2004), 595-616. doi: 10.1088/0951-7715/17/2/014. |
[24] | R. S. Strichartz, Differential Equations on Fractals. A Tutorial, Princeton University Press, 2006. |
[25] | R. S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198 (2003), 43-83. doi: 10.1016/S0022-1236(02)00035-6. |