We give a discrete characterization of the trace of a class of Sobolev spaces on the Sierpinski gasket to the bottom line. This includes the $ L^2 $ domain of the Laplacian as a special case. In addition, for Sobolev spaces of low orders, including the domain of the Dirichlet form, the trace spaces are Besov spaces on the line.
Citation: |
[1] |
M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Field, 79 (1988), 543-623.
doi: 10.1007/BF00318785.![]() ![]() ![]() |
[2] |
S. Cao and H. Qiu, Sobolev spaces on p.c.f. self-similar sets: critical orders and atomic decompositions, in submission.
![]() |
[3] |
S. Cao and H. Qiu, Boundary Value Problems for harmonic functions on domains in Sierpinski gaskets, Commun. Pure Appl. Anal., 19 (2020), 1147-1179.
doi: 10.3934/cpaa.2020054.![]() ![]() ![]() |
[4] |
S. Cao and H. Qiu, Higher order tangents and Higher order Laplacians on Sierpinski Gasket Type Fractals, preprint, arXiv: 1607.07544.
![]() |
[5] |
Q. Gu and K. Lau, Dirichlet forms and critical exponents on fractals, preprint, arXiv: 1703.07061.
doi: 10.1090/tran/8004.![]() ![]() ![]() |
[6] |
Z. Guo, R. Kogan, H. Qiu and R. S. Strichartz, Boundary value problems for a family of domains in the Sierpinski gasket, Illinois J. Math., 58 (2014), 497-519.
![]() ![]() |
[7] |
M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals, J. Func. Anal., 238 (2006), 578-611.
doi: 10.1016/j.jfa.2006.05.012.![]() ![]() ![]() |
[8] |
M. Hinz, D. Koch and M. Meinert, Sobolev spaces and calculus of variations on fractals, preprint, arXiv: 1805.04456.
![]() |
[9] |
J. Hu and X. Wang, Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals, Studia Math., 177 (2006), 153-172.
doi: 10.4064/sm177-2-5.![]() ![]() ![]() |
[10] |
J. Hu and M. Zähle, Potential spaces on fractals, Studia Math., 170 (2005), 259-281.
doi: 10.4064/sm170-3-4.![]() ![]() ![]() |
[11] |
M. Ionescu, L. G. Rogers and R. S. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam., 29 (2013), 1159-1190.
doi: 10.4171/RMI/752.![]() ![]() ![]() |
[12] |
A. Jonsson, A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z., 250 (2005), 599-609.
doi: 10.1007/s00209-005-0767-z.![]() ![]() ![]() |
[13] |
A. Jonsson, Brownian motion on fractals and function spaces, Math. Z., 222 (1996), 495-504.
doi: 10.1007/PL00004543.![]() ![]() ![]() |
[14] |
A. Kamont, A discrete characterization of Besov Spaces, Approx. Theory Appl., 13 (1997), 63-77.
![]() ![]() |
[15] |
J. Kigami, A harmonic calculus on the Sierpinski spaces, Jpn. J. Appl. Math., 6 (1989), 259-290.
doi: 10.1007/BF03167882.![]() ![]() ![]() |
[16] |
J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721-755.
doi: 10.2307/2154402.![]() ![]() ![]() |
[17] |
J. Kigami, Analysis on Fractals, Cambridge University Press, 2001.
doi: 10.1017/CBO9780511470943.![]() ![]() ![]() |
[18] |
T. Kumagai, Brownian Motion Penetrating Fractals: An Application of the Trace Theorem of Besov Spaces, J. Func. Anal., 170 (2000), 69-92.
doi: 10.1006/jfan.1999.3500.![]() ![]() ![]() |
[19] |
W. Li and R. S. Strichartz, Boundary value problems on a half Sierpinski gasket, J. Fractal Geom., 1 (2014), 1-43.
doi: 10.4171/JFG/1.![]() ![]() ![]() |
[20] |
T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc., 83 (1990).
doi: 10.1090/memo/0420.![]() ![]() ![]() |
[21] |
J. Owen and R. S. Strichartz, Boundary value problems for harmonic functions on a domain in the Sierpinski gasket, Indiana Univ. Math. J., 61 (2012), 319-335.
doi: 10.1512/iumj.2012.61.4539.![]() ![]() ![]() |
[22] |
H. Qiu, Exact spectrum of the Laplacian on a domain in the Sierpinski gasket, J. Funct. Anal., 277 (2019), 806-888.
doi: 10.1016/j.jfa.2018.08.018.![]() ![]() ![]() |
[23] |
R. S. Strichartz and C. Wong, The p-Laplacian on the Sierpinski gasket, Nonlinearity, 17 (2004), 595-616.
doi: 10.1088/0951-7715/17/2/014.![]() ![]() ![]() |
[24] |
R. S. Strichartz, Differential Equations on Fractals. A Tutorial, Princeton University Press, 2006.
![]() ![]() |
[25] |
R. S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198 (2003), 43-83.
doi: 10.1016/S0022-1236(02)00035-6.![]() ![]() ![]() |