We consider the Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. We establish local well-posedness result in Orlicz spaces. We derive the existence of global solutions for small initial data. We obtain decay estimates for large time in Lebesgue spaces.
Citation: |
[1] | R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^nd$ edition, Pure and Applied Mathematics (Amsterdam), Vol. 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] | C. Bennett and R. Sharpley, Interpolation of Operators, Pure and applied mathematics, Academic Press, 1988. |
[3] | Z. W. Birnbaum and W. Orlicz, \"Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1-67. |
[4] | H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. doi: 10.1007/BF02790212. |
[5] | T. Cazenave and A. Haraux, Introduction aux Problémes d'évolution Semi-linéaires, Ellipses, Paris, 1990. |
[6] | G. Furioli, T. Kawakami, B. Ruf and E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., 262 (2017), 145-180. doi: 10.1016/j.jde.2016.09.024. |
[7] | S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type, Commun. Pure Appl. Math., 59 (2006), 1639-1658. doi: 10.1002/cpa.20127. |
[8] | N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., 251 (2011), 1172-1194. doi: 10.1016/j.jde.2011.02.015. |
[9] | N. Ioku, B. Ruf and E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in $\mathbb{R}^2$, Math. Phys. Anal. Geom., 18 (2015), Art. 29, 19 pp. doi: 10.1007/s11040-015-9199-0. |
[10] | M. Majdoub, S. Otsmane and S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity, Adv. Differ. Equ., 23 (2018), 489-522. |
[11] | M. Majdoub and S. Tayachi, Well-posedness, global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math. Rio de Janeiro, 2 (2018), 2379-2404. |
[12] | M. Majdoub and S. Tayachi, Global existence and decay estimates for the heat equation with exponential nonlinearity, preprint, arXiv: 1912.06490v1. |
[13] | M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 250, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863. |
[14] | N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. doi: 10.1512/iumj.1968.17.17028. |
[15] | F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32 (1979), 277-296. doi: 10.1016/0022-1236(79)90040-5. |
[16] | F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, J. Indiana Univ. Math., 29 (1980), 79-102. doi: 10.1512/iumj.1980.29.29007. |
[17] | F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845. |