July  2020, 19(7): 3625-3650. doi: 10.3934/cpaa.2020160

The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity

1. 

LaMA-Liban, Lebanese University, Faculty of Sciences, Department of Mathematics, P.O. Box 37 Tripoli, Lebanon

2. 

LaSIE, Pôle Sciences et Technologies, Université de La Rochelle, Avenue Michel Crépeau, 17031 La Rochelle, France

*Corresponding author

Received  July 2019 Revised  January 2020 Published  April 2020

We consider the Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. We establish local well-posedness result in Orlicz spaces. We derive the existence of global solutions for small initial data. We obtain decay estimates for large time in Lebesgue spaces.

Citation: Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^nd$ edition, Pure and Applied Mathematics (Amsterdam), Vol. 140, Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and applied mathematics, Academic Press, 1988.   Google Scholar
[3]

Z. W. Birnbaum and W. Orlicz, \"Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1-67.   Google Scholar

[4]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304.  doi: 10.1007/BF02790212.  Google Scholar

[5]

T. Cazenave and A. Haraux, Introduction aux Problémes d'évolution Semi-linéaires, Ellipses, Paris, 1990.  Google Scholar

[6]

G. FurioliT. KawakamiB. Ruf and E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., 262 (2017), 145-180.  doi: 10.1016/j.jde.2016.09.024.  Google Scholar

[7]

S. IbrahimM. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type, Commun. Pure Appl. Math., 59 (2006), 1639-1658.  doi: 10.1002/cpa.20127.  Google Scholar

[8]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., 251 (2011), 1172-1194.  doi: 10.1016/j.jde.2011.02.015.  Google Scholar

[9]

N. Ioku, B. Ruf and E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in $\mathbb{R}^2$, Math. Phys. Anal. Geom., 18 (2015), Art. 29, 19 pp. doi: 10.1007/s11040-015-9199-0.  Google Scholar

[10]

M. MajdoubS. Otsmane and S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity, Adv. Differ. Equ., 23 (2018), 489-522.   Google Scholar

[11]

M. Majdoub and S. Tayachi, Well-posedness, global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math. Rio de Janeiro, 2 (2018), 2379-2404.   Google Scholar

[12]

M. Majdoub and S. Tayachi, Global existence and decay estimates for the heat equation with exponential nonlinearity, preprint, arXiv: 1912.06490v1. Google Scholar

[13]

M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 250, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863.  Google Scholar

[14]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[15]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[16]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, J. Indiana Univ. Math., 29 (1980), 79-102.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[17]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

show all references

References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^nd$ edition, Pure and Applied Mathematics (Amsterdam), Vol. 140, Elsevier/Academic Press, Amsterdam, 2003.   Google Scholar
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and applied mathematics, Academic Press, 1988.   Google Scholar
[3]

Z. W. Birnbaum and W. Orlicz, \"Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1-67.   Google Scholar

[4]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304.  doi: 10.1007/BF02790212.  Google Scholar

[5]

T. Cazenave and A. Haraux, Introduction aux Problémes d'évolution Semi-linéaires, Ellipses, Paris, 1990.  Google Scholar

[6]

G. FurioliT. KawakamiB. Ruf and E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., 262 (2017), 145-180.  doi: 10.1016/j.jde.2016.09.024.  Google Scholar

[7]

S. IbrahimM. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type, Commun. Pure Appl. Math., 59 (2006), 1639-1658.  doi: 10.1002/cpa.20127.  Google Scholar

[8]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., 251 (2011), 1172-1194.  doi: 10.1016/j.jde.2011.02.015.  Google Scholar

[9]

N. Ioku, B. Ruf and E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in $\mathbb{R}^2$, Math. Phys. Anal. Geom., 18 (2015), Art. 29, 19 pp. doi: 10.1007/s11040-015-9199-0.  Google Scholar

[10]

M. MajdoubS. Otsmane and S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity, Adv. Differ. Equ., 23 (2018), 489-522.   Google Scholar

[11]

M. Majdoub and S. Tayachi, Well-posedness, global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math. Rio de Janeiro, 2 (2018), 2379-2404.   Google Scholar

[12]

M. Majdoub and S. Tayachi, Global existence and decay estimates for the heat equation with exponential nonlinearity, preprint, arXiv: 1912.06490v1. Google Scholar

[13]

M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 250, Marcel Dekker, Inc., New York, 2002. doi: 10.1201/9780203910863.  Google Scholar

[14]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[15]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[16]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, J. Indiana Univ. Math., 29 (1980), 79-102.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[17]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (84)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]