-
Previous Article
Improved Sobolev inequalities and critical problems
- CPAA Home
- This Issue
-
Next Article
The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity
The dynamics of nonlocal diffusion systems with different free boundaries
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
This paper is concerned with a class of free boundary models with "nonlocal diffusions'' and different free boundaries, which are natural extensions of free boundary problems of reaction diffusion systems with different free boundaries in [M.X.Wang and Y.Zhang, J. Differ. Equ., 264 (2018), 3527-3558] and references therein. These different free boundaries, which may intersect each other as time evolves, are used to describe the spreading front of the species. We prove that such kind of nonlocal diffusion problems has a unique global solution. Moreover, we investigate the long time behavior of global solution and criteria of spreading and vanishing for the classical Lotka-Volterra competition, prey-predator and mutualist models.
References:
[1] |
P. Bates and G. Zhao,
Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007. |
[2] |
H. Berestycki, J. Coville and H. Vo,
On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.
doi: 10.1016/j.jfa.2016.05.017. |
[3] |
H. Berestycki, J. Coville and H. Vo,
Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.
doi: 10.1007/s00285-015-0911-2. |
[4] |
J. F. Cao, Y. H. Du, F. Li and W. T. Li,
The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013. |
[5] |
J. Coville,
On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differ. Equ., 249 (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003. |
[6] |
Y. H. Du and Z. G. Lin,
Spreading-Vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[7] |
Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1. Google Scholar |
[8] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dyn. Differ. Equ., 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[9] |
J. S. Guo and C. H. Wu,
Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.
doi: 10.1088/0951-7715/28/1/1. |
[10] |
V. Hutson, S. Martinez, K. Mischaikow and G. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1093/acprof:oso/9780199299126.003.0008. |
[11] |
C. Y. Kao, Y. Lou and W. X. Shen,
Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[12] |
L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), Art. 123646.
doi: 10.1016/j.jmaa.2019.123646. |
[13] |
S. Y. Liu, H. M. Huang and M. X. Wang,
Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differ. Equ., 266 (2019), 4769-4799.
doi: 10.1016/j.jde.2018.10.009. |
[14] |
R. Natan, E. Klein, J. J. Robledo-Arnuncio and E. Revilla, Dispersal kernels: review, in Dispersal Ecology and Evolution (eds. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock), Oxford University Press, Oxford, UK, (2012), 187–210. Google Scholar |
[15] |
J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions I: global solution, J. Math. Anal. Appl., (2020), Art. 123974. DOI: 10.1016/j.jmaa.2020.123974. Google Scholar |
[16] |
J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions II: Spreading-vanishing and long-time behavior, Discrete Contin. Dyn. Syst. B, (2020), doi: 10.3934/dcdsb.2020121. Google Scholar |
[17] |
M. X. Wang,
On some free boundary problems of prey-predator model, J. Differ. Equ., 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[18] |
M. X. Wang,
The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differ. Equ., 258 (2015), 1252-1266.
doi: 10.1016/j.jde.2014.10.022. |
[19] |
M. X. Wang and Y. Zhang,
Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.
doi: 10.1016/j.nonrwa.2015.01.004. |
[20] |
M. X. Wang and Y. Zhang,
Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.
doi: 10.1016/j.na.2017.01.005. |
[21] |
M. X. Wang and Y. Zhang,
Dynamics for a diffusive prey-predator model with different free boundaries, J. Differ. Equ., 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027. |
[22] |
M. X. Wang and J. F. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differ. Equ., 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[23] |
C. H. Wu,
The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differ. Equ., 259 (2015), 873-897.
doi: 10.1016/j.jde.2015.02.021. |
[24] |
Q. Y. Zhang and M. X. Wang,
Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.
doi: 10.1016/j.jmaa.2019.02.037. |
show all references
References:
[1] |
P. Bates and G. Zhao,
Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007. |
[2] |
H. Berestycki, J. Coville and H. Vo,
On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.
doi: 10.1016/j.jfa.2016.05.017. |
[3] |
H. Berestycki, J. Coville and H. Vo,
Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.
doi: 10.1007/s00285-015-0911-2. |
[4] |
J. F. Cao, Y. H. Du, F. Li and W. T. Li,
The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013. |
[5] |
J. Coville,
On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differ. Equ., 249 (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003. |
[6] |
Y. H. Du and Z. G. Lin,
Spreading-Vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[7] |
Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1. Google Scholar |
[8] |
J. S. Guo and C. H. Wu,
On a free boundary problem for a two-species weak competition system, J. Dyn. Differ. Equ., 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0. |
[9] |
J. S. Guo and C. H. Wu,
Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.
doi: 10.1088/0951-7715/28/1/1. |
[10] |
V. Hutson, S. Martinez, K. Mischaikow and G. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1093/acprof:oso/9780199299126.003.0008. |
[11] |
C. Y. Kao, Y. Lou and W. X. Shen,
Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[12] |
L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), Art. 123646.
doi: 10.1016/j.jmaa.2019.123646. |
[13] |
S. Y. Liu, H. M. Huang and M. X. Wang,
Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differ. Equ., 266 (2019), 4769-4799.
doi: 10.1016/j.jde.2018.10.009. |
[14] |
R. Natan, E. Klein, J. J. Robledo-Arnuncio and E. Revilla, Dispersal kernels: review, in Dispersal Ecology and Evolution (eds. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock), Oxford University Press, Oxford, UK, (2012), 187–210. Google Scholar |
[15] |
J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions I: global solution, J. Math. Anal. Appl., (2020), Art. 123974. DOI: 10.1016/j.jmaa.2020.123974. Google Scholar |
[16] |
J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions II: Spreading-vanishing and long-time behavior, Discrete Contin. Dyn. Syst. B, (2020), doi: 10.3934/dcdsb.2020121. Google Scholar |
[17] |
M. X. Wang,
On some free boundary problems of prey-predator model, J. Differ. Equ., 256 (2014), 3365-3394.
doi: 10.1016/j.jde.2014.02.013. |
[18] |
M. X. Wang,
The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differ. Equ., 258 (2015), 1252-1266.
doi: 10.1016/j.jde.2014.10.022. |
[19] |
M. X. Wang and Y. Zhang,
Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.
doi: 10.1016/j.nonrwa.2015.01.004. |
[20] |
M. X. Wang and Y. Zhang,
Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.
doi: 10.1016/j.na.2017.01.005. |
[21] |
M. X. Wang and Y. Zhang,
Dynamics for a diffusive prey-predator model with different free boundaries, J. Differ. Equ., 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027. |
[22] |
M. X. Wang and J. F. Zhao,
Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differ. Equ., 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4. |
[23] |
C. H. Wu,
The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differ. Equ., 259 (2015), 873-897.
doi: 10.1016/j.jde.2015.02.021. |
[24] |
Q. Y. Zhang and M. X. Wang,
Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.
doi: 10.1016/j.jmaa.2019.02.037. |
[1] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[2] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[3] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[4] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[5] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[6] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[7] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[8] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[9] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[10] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[11] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[12] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[13] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[14] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[15] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[16] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[17] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[18] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[19] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[20] |
Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]