July  2020, 19(7): 3651-3672. doi: 10.3934/cpaa.2020161

The dynamics of nonlocal diffusion systems with different free boundaries

School of Mathematics, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author

Received  July 2019 Revised  January 2020 Published  April 2020

Fund Project: The third author is supported by NSFC grants 11771110, 11971128

This paper is concerned with a class of free boundary models with "nonlocal diffusions'' and different free boundaries, which are natural extensions of free boundary problems of reaction diffusion systems with different free boundaries in [M.X.Wang and Y.Zhang, J. Differ. Equ., 264 (2018), 3527-3558] and references therein. These different free boundaries, which may intersect each other as time evolves, are used to describe the spreading front of the species. We prove that such kind of nonlocal diffusion problems has a unique global solution. Moreover, we investigate the long time behavior of global solution and criteria of spreading and vanishing for the classical Lotka-Volterra competition, prey-predator and mutualist models.

Citation: Lei Li, Jianping Wang, Mingxin Wang. The dynamics of nonlocal diffusion systems with different free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3651-3672. doi: 10.3934/cpaa.2020161
References:
[1]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[2]

H. BerestyckiJ. Coville and H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.  doi: 10.1016/j.jfa.2016.05.017.  Google Scholar

[3]

H. BerestyckiJ. Coville and H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[4]

J. F. CaoY. H. DuF. Li and W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differ. Equ., 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[6]

Y. H. Du and Z. G. Lin, Spreading-Vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[7]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1. Google Scholar

[8]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Differ. Equ., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[9]

J. S. Guo and C. H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.  doi: 10.1088/0951-7715/28/1/1.  Google Scholar

[10]

V. HutsonS. MartinezK. Mischaikow and G. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1093/acprof:oso/9780199299126.003.0008.  Google Scholar

[11]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[12]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), Art. 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[13]

S. Y. LiuH. M. Huang and M. X. Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differ. Equ., 266 (2019), 4769-4799.  doi: 10.1016/j.jde.2018.10.009.  Google Scholar

[14]

R. Natan, E. Klein, J. J. Robledo-Arnuncio and E. Revilla, Dispersal kernels: review, in Dispersal Ecology and Evolution (eds. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock), Oxford University Press, Oxford, UK, (2012), 187–210. Google Scholar

[15]

J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions I: global solution, J. Math. Anal. Appl., (2020), Art. 123974. DOI: 10.1016/j.jmaa.2020.123974. Google Scholar

[16]

J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions II: Spreading-vanishing and long-time behavior, Discrete Contin. Dyn. Syst. B, (2020), doi: 10.3934/dcdsb.2020121. Google Scholar

[17]

M. X. Wang, On some free boundary problems of prey-predator model, J. Differ. Equ., 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[18]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differ. Equ., 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[19]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[20]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.  doi: 10.1016/j.na.2017.01.005.  Google Scholar

[21]

M. X. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differ. Equ., 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[22]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differ. Equ., 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.  Google Scholar

[23]

C. H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differ. Equ., 259 (2015), 873-897.  doi: 10.1016/j.jde.2015.02.021.  Google Scholar

[24]

Q. Y. Zhang and M. X. Wang, Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.  doi: 10.1016/j.jmaa.2019.02.037.  Google Scholar

show all references

References:
[1]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[2]

H. BerestyckiJ. Coville and H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.  doi: 10.1016/j.jfa.2016.05.017.  Google Scholar

[3]

H. BerestyckiJ. Coville and H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), 1693-1745.  doi: 10.1007/s00285-015-0911-2.  Google Scholar

[4]

J. F. CaoY. H. DuF. Li and W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.  Google Scholar

[5]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differ. Equ., 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.  Google Scholar

[6]

Y. H. Du and Z. G. Lin, Spreading-Vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[7]

Y. H. Du, M. X. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1. Google Scholar

[8]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Differ. Equ., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[9]

J. S. Guo and C. H. Wu, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015), 1-27.  doi: 10.1088/0951-7715/28/1/1.  Google Scholar

[10]

V. HutsonS. MartinezK. Mischaikow and G. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1093/acprof:oso/9780199299126.003.0008.  Google Scholar

[11]

C. Y. KaoY. Lou and W. X. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.  Google Scholar

[12]

L. Li, W. J. Sheng and M. X. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), Art. 123646. doi: 10.1016/j.jmaa.2019.123646.  Google Scholar

[13]

S. Y. LiuH. M. Huang and M. X. Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differ. Equ., 266 (2019), 4769-4799.  doi: 10.1016/j.jde.2018.10.009.  Google Scholar

[14]

R. Natan, E. Klein, J. J. Robledo-Arnuncio and E. Revilla, Dispersal kernels: review, in Dispersal Ecology and Evolution (eds. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock), Oxford University Press, Oxford, UK, (2012), 187–210. Google Scholar

[15]

J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions I: global solution, J. Math. Anal. Appl., (2020), Art. 123974. DOI: 10.1016/j.jmaa.2020.123974. Google Scholar

[16]

J. P. Wang and M. X. Wang, Free boundary problems with nonlocal and local diffusions II: Spreading-vanishing and long-time behavior, Discrete Contin. Dyn. Syst. B, (2020), doi: 10.3934/dcdsb.2020121. Google Scholar

[17]

M. X. Wang, On some free boundary problems of prey-predator model, J. Differ. Equ., 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[18]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differ. Equ., 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[19]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[20]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.  doi: 10.1016/j.na.2017.01.005.  Google Scholar

[21]

M. X. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differ. Equ., 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[22]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differ. Equ., 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.  Google Scholar

[23]

C. H. Wu, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differ. Equ., 259 (2015), 873-897.  doi: 10.1016/j.jde.2015.02.021.  Google Scholar

[24]

Q. Y. Zhang and M. X. Wang, Dynamics for the diffusive mutualist model with advection and different free boundaries, J. Math. Anal. Appl., 474 (2019), 1512-1535.  doi: 10.1016/j.jmaa.2019.02.037.  Google Scholar

[1]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[2]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[5]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[8]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[14]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[19]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[20]

Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (141)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]