    July  2020, 19(7): 3723-3734. doi: 10.3934/cpaa.2020164

## Symmetry of positive solutions to fractional equations in bounded domains and unbounded cylinders

 Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033, USA

Received  September 2019 Revised  January 2020 Published  April 2020

The aim of this paper is to study symmetry and monotonicity for positive solutions to fractional equations. We first consider the following problems in bounded domains in the sense of distributions
 $\begin{equation*} \begin{cases} (-\Delta)^su = \frac{g(u)}{|x|^{2s}}+f(x,u)\ \ \ &\mbox{in}\ \Omega,\\ u>0\ \ \ \ \ \ \ \ \ \ \ &\mbox{in}\ \Omega,\\ u = 0\ \ \ \ \ \ \ \ \ \ \ &\mbox{in}\ \mathbb R^n\setminus\Omega, \end{cases} \end{equation*}$
where
 $n>2s$
,
 $0 . We prove that all positive solutions are radically symmetric about the origin. Compare to results in , we use a completely different method under the weaker conditions in $ f $. Next we consider a problem in infinite cylinders. We establish the symmetry and monotonicity of positive solutions by using the method of moving planes. This result can be seen as the nonlocal counterparts of . Citation: Yunyun Hu. Symmetry of positive solutions to fractional equations in bounded domains and unbounded cylinders. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3723-3734. doi: 10.3934/cpaa.2020164 ##### References:   B. Barrios, L. Montoro and B. Sciunzi, On the moving plane method for nonlocal problems in bounded domains, J. Anal. Math., 135 (2018), 37-57. doi: 10.1007/s11854-018-0031-1.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications (ed. J. L. Lions et al.), Masson, Paris, (1993), 27–42. Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I., Duke Math. J., 81 (1996), 467-494. doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Commun. Pure Appl. Math., 50 (1997), 1089-1111. doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 25 (1997), 69-94. Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar  W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domains, J. Func. Anal. (2019), submitted to. Google Scholar  W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758. doi: 10.1016/j.aim.2018.07.016.  Google Scholar  W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar  W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354. doi: 10.3934/dcds.2005.12.347.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 99. doi: 10.1007/s00526-016-1032-5.  Google Scholar  C. Li, L. Wu and H. Xu, Maximum principle and B$\hat{o}$cher type theorem, Proc. Natl. Acad. Sci. USA, 115 (27), 6976-6979. doi: 10.1073/pnas.1804225115.  Google Scholar  L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar show all references ##### References:   B. Barrios, L. Montoro and B. Sciunzi, On the moving plane method for nonlocal problems in bounded domains, J. Anal. Math., 135 (2018), 37-57. doi: 10.1007/s11854-018-0031-1.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications (ed. J. L. Lions et al.), Masson, Paris, (1993), 27–42. Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I., Duke Math. J., 81 (1996), 467-494. doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Commun. Pure Appl. Math., 50 (1997), 1089-1111. doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar  H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 25 (1997), 69-94. Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar  W. Chen and Y. Hu, Monotonicity of positive solutions for nonlocal problems in unbounded domains, J. Func. Anal. (2019), submitted to. Google Scholar  W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758. doi: 10.1016/j.aim.2018.07.016.  Google Scholar  W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar  W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354. doi: 10.3934/dcds.2005.12.347.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.  Google Scholar  S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 99. doi: 10.1007/s00526-016-1032-5.  Google Scholar  C. Li, L. Wu and H. Xu, Maximum principle and B$\hat{o}$cher type theorem, Proc. Natl. Acad. Sci. USA, 115 (27), 6976-6979. doi: 10.1073/pnas.1804225115.  Google Scholar  L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar   Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154  Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393  Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015  Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125  Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069  Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071  Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268  Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065  Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068  Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional$ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026  Ryan Hynd, Francis Seuffert. On the symmetry and monotonicity of Morrey extremals. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5285-5303. doi: 10.3934/cpaa.2020238  Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046  Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201  Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235  Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157  Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925  CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in$\mathbb{R}^{n}\$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004  Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022  Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051  Yan Deng, Junfang Zhao, Baozeng Chu. Symmetry of positive solutions for systems of fractional Hartree equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3085-3096. doi: 10.3934/dcdss.2021079

2020 Impact Factor: 1.916