In this paper, we consider the following fractional critical Schrödinger-Poisson system without perturbation terms
$ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+K(x)\phi u = |u|^{2_s^{\ast}-2}u & \hbox{in $\mathbb{R}^3$,} \\ (-\Delta)^t\phi = K(x)u^2& \hbox{in $\mathbb{R}^3$,} \end{cases} \end{equation*} $
where $ s\in(\frac{3}{4},1) $, $ t\in(0,1) $. Under some suitable assumptions on potentials $ V(x) $ and $ K(x) $, we show that the ground state positive solutions do not exist, by using the topological argument, we establish the existence of positive bound state solutions in the range $ (\frac{s}{3}\mathcal{S}_s^{\frac{3}{2s}},\frac{2s}{3}\mathcal{S}_s^{\frac{3}{2s}}) $.
Citation: |
[1] |
C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method, Calc. Var. Partial Differ. Equ., 55 (2016), 47: 19.
doi: 10.1007/s00526-016-0983-x.![]() ![]() ![]() |
[2] |
A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. Henri Poincare Anal. Non Lineaire, 27 (2010), 779-791.
doi: 10.1016/j.anihpc.2009.11.012.![]() ![]() ![]() |
[3] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.
doi: 10.1016/j.jmaa.2008.03.057.![]() ![]() ![]() |
[4] |
V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^N$, J. Funct. Anal., 88 (1990), 90-117.
doi: 10.1016/0022-1236(90)90120-A.![]() ![]() ![]() |
[5] |
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Nonlinear Anal., 11 (1998), 283-293.
doi: 10.12775/TMNA.1998.019.![]() ![]() ![]() |
[6] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168.![]() ![]() ![]() |
[7] |
G. M. Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162 Cambridge, 2016.
doi: 10.1017/CBO9781316282397.![]() ![]() ![]() |
[8] |
L. Brasco, M. Squassina and Y. Yang, Global compactness results for nonlocal problems, Discrete Contin. Dyn. Syst. S, 11 (2018), 391-424.
doi: 10.3934/dcdss.2018022.![]() ![]() ![]() |
[9] |
G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, preprint, arXiv: 1802.02539v1.
doi: 10.1051/cocv/2018071.![]() ![]() ![]() |
[10] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[11] |
R. Cont and P. Tankov, Financial Modeling with Jump Processes, Chapman Hall/CRC Financial Mathematics Series, Boca Raton, 2004.
![]() ![]() |
[12] |
J. N. Correia and G. M. Figueiredo, Existence of positive solution of the equation $(-\Delta)^su+a(x)u = |u|^{2_s^{\ast}-2}u$, Calc. Var. Partial Differ. Equ., 58 (2019), Art. 63.
doi: 10.1007/s00526-019-1502-7.![]() ![]() ![]() |
[13] |
S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Lecture Notes, Scuola Normale Superiore di Pisa (New Series), Vol. 15, Edizioni della Normale, Pisa, 2017.
doi: 10.1007/978-88-7642-601-8.![]() ![]() ![]() |
[14] |
S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional laplacian, Matematiche LXVIII, 68 (2013), 201-216.
doi: 10.4418/2013.68.1.15.![]() ![]() ![]() |
[15] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
[16] |
Y. He and G. B. Li, Standing waves for a class of Schrödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766.
doi: 10.5186/aasfm.2015.4041.![]() ![]() ![]() |
[17] |
L. R. Huang, E. Rocha and J. Q. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 408 (2013), 55-69.
doi: 10.1016/j.jmaa.2013.05.071.![]() ![]() ![]() |
[18] |
Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006.![]() ![]() ![]() |
[19] |
H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 67 (2007), 1445-1456.
doi: 10.1016/j.na.2006.07.029.![]() ![]() ![]() |
[20] |
H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 407-437.
doi: 10.1515/ans-2007-0305.![]() ![]() ![]() |
[21] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[22] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev., 66 (2002), 56-108.
doi: 10.1103/PhysRevE.66.056108.![]() ![]() ![]() |
[23] |
Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
![]() ![]() |
[24] |
F. Y. Li, Y. H. Li and J. P. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), Art. 1450036.
doi: 10.1142/S0219199714500369.![]() ![]() ![]() |
[25] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. Henri Poincare (C) Non Linear Anal., 1 (1984), 109-145.
doi: 10.1016/S0294-1449(16)30428-0.![]() ![]() ![]() |
[26] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. Henri Poincare (C) Non Linear Anal., 1 (1984), 223-283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
[27] |
Z. S. Liu and J. J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.
doi: 10.1051/cocv/2016063.![]() ![]() ![]() |
[28] |
R. Metzler and J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.![]() ![]() ![]() |
[29] |
E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differ. Integral Equ., 30 (2017), 231-258.
![]() ![]() |
[30] |
E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[31] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$, J. Math. Phys., 54 (2013), Art. 031501.
doi: 10.1063/1.4793990.![]() ![]() ![]() |
[32] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.
doi: 10.1090/S0002-9947-2014-05884-4.![]() ![]() ![]() |
[33] |
X. D. Shang and J. H. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.
doi: 10.1088/0951-7715/27/2/187.![]() ![]() ![]() |
[34] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[35] |
K. M. Teng, Multiple solutions for a class of fractional Schrödinger equation in $\mathbb{R}^N$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.
doi: 10.1016/j.nonrwa.2014.06.008.![]() ![]() ![]() |
[36] |
K. M. Teng, Ground state solutions for the nonlinear fractional Schrödinger-Poisson system, Appl. Anal., 98 (2019), 1959-1996.
doi: 10.1080/00036811.2018.1441998.![]() ![]() ![]() |
[37] |
K. M. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equ., 261 (2016), 3061-3106.
doi: 10.1016/j.jde.2016.05.022.![]() ![]() ![]() |
[38] |
K. M. Teng, Concerntration phenomenon for fractional nonlinear Schrödinger-Poisson system with critical nonlinearity, preprint, arXiv: 1906.11563.
![]() |
[39] |
K. M. Teng and X. M. He, Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 15 (2016), 991-1008.
doi: 10.3934/cpaa.2016.15.991.![]() ![]() ![]() |
[40] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth, Z. Angew. Math. Phys., 66 (2015), 2441-2471.
doi: 10.1007/s00033-015-0531-0.![]() ![]() ![]() |
[41] |
J. Zhang, M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.
doi: 10.1515/ans-2015-5024.![]() ![]() ![]() |
[42] |
X. Zhang, S. Ma and Q. Xie, Bound state solutions of Schrödinger-Poisson system with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 605-625.
doi: 10.3934/dcds.2017025.![]() ![]() ![]() |
[43] |
L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equ., 255 (2013), 1-23.
doi: 10.1016/j.jde.2013.03.005.![]() ![]() ![]() |
[44] |
L. G. Zhao and F. K. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150-2164.
doi: 10.1016/j.na.2008.02.116.![]() ![]() ![]() |