This paper is concerned with blow-up solution for the Cauchy problem of two-component Camassa-Holm equation with generalized weak dissipation. By Kato's theorem and monotonicity, we investigate the local well-posedness of Cauchy problem and establish the blow-up criteria and the blow-up rate. Moreover, the property of blow-up points set is characterized.
Citation: |
[1] | A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. |
[2] | R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. |
[3] | M. Chen, S. Liu and Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15. doi: 10.1007/s11005-005-0041-7. |
[4] | A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. |
[5] | A. Constantin, Existence of permanent and breaking waves for a shallow water equation, Ann. Inst. Fourier, 50 (2000), 321-362. |
[6] | A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. |
[7] | A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51 (1998), 475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[8] | A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793. |
[9] | A. Constantin and R. Ivanov, On the integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132. doi: 10.1016/j.physleta.2008.10.050. |
[10] | A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2. |
[11] | A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Commun. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801. |
[12] | J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493. doi: 10.3934/dcds.2007.19.493. |
[13] | G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278. doi: 10.1016/j.jfa.2010.02.008. |
[14] | G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66. doi: 10.1007/s00209-009-0660-2. |
[15] | R. Ivanov, Two-component integrables systems modeling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. doi: 10.1016/j.wavemoti.2009.06.012. |
[16] | T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Vol. 448, (1975), 25–70. |
[17] | T. Kato, On the Korteweg-de Vries equation, Manuscr. Math., 28 (1979), 89-99. doi: 10.1007/BF01647967. |
[18] | Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162 (2000), 27-63. doi: 10.1006/jdeq.1999.3683. |
[19] | A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer Science Business Media, 2012. doi: 10.1007/978-1-4612-5561-1. |
[20] | G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1980. |
[21] | S. Wu and Z. Yin, Blow-up, blow-up rate and decay of the weakly dissipative Camassa-Holm equation, J. Math. Phys., 47 (2006), Art. 013504. doi: 10.1063/1.2158437. |
[22] | Z. Yin, Well-posedness, blowup and global existence for an integrable shallow water equation, Discrete Contin. Dyn. Syst., 11 (2004), 393-411. doi: 10.3934/dcds.2004.11.393. |
[23] | Z. Yin, Well-posedness, global solutions and blowup phenomena for a nonlinearly dispersive wave equation, J. Evol. Equ., 4 (2004), 391-419. doi: 10.1007/s00028-004-0166-7. |
[24] | J. Yin, L. Tian and X. Fan, Orbital stability of floating periodic peakons for the Camassa-Holm equation, Nonlinear Anal. Real World Appl., 11 (2010), 4021-4026. doi: 10.1016/j.nonrwa.2010.03.008. |