# American Institute of Mathematical Sciences

July  2020, 19(7): 3785-3803. doi: 10.3934/cpaa.2020167

## The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities

 1 School of Mathematical Sciences, Peking University, Beijing 100871, China 2 School of Science, Hainan University, Haikou 570228, China

* Corresponding author

Received  October 2019 Revised  January 2020 Published  April 2020

Fund Project: Shaopeng Xu is supported by Hainan Provincial Natural Science Foundation of China (No. 2019RC168)

Chen and Zhang [7] consider the probabilistic Cauchy problem of the fourth order Schrödinger equation
 \begin{align*} (i\partial_t+\varepsilon\Delta+\Delta^2)u = P_m((\partial_x^\alpha u)_{|\alpha|\leq2}, (\partial_x^\alpha \overline{u})_{|\alpha|\leq2}), \ m\geq3, \end{align*}
where
 $P_m$
is a homogeneous polynomial of degree
 $m$
. The almost sure local well-posedness and small data global existence were obtained in
 $H^s(\mathbb{R}^d)$
with the regularity threshold
 $s_c-1/2$
when
 $d\geq3$
, where
 $s_c: = d/2-2/(m-1)$
is the scaling critical regularity. For the lower regularity threshold
 $(d-1)s_c/d$
with
 $m = 2$
and
 $s_c-\min\{1, d/4\}$
with
 $m\geq3$
, we get the corresponding well-posedness of the following fourth order nonlinear Schrödinger equation
 \begin{align*} (i\partial_t+\varepsilon\Delta+\Delta^2)u = P_m((\partial_x^\alpha \overline{u})_{|\alpha|\leq2}), \ m\geq2 \end{align*}
on
 ${\mathbb{R}}^d$
(
 $d\geq2$
) with random initial data.
Citation: Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3785-3803. doi: 10.3934/cpaa.2020167
##### References:
 [1] M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris. Ser. I, 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar [2] Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in Excursions in Harmonic Analysis, Vol. 4, Birkhäuser/Springer, Cham, (2015), 3–25.  Google Scholar [3] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166 (1994), 1-26.   Google Scholar [4] J. Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176 (1996), 421-445.   Google Scholar [5] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar [6] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math., 173 (2008), 477-496.  doi: 10.1007/s00222-008-0123-0.  Google Scholar [7] J. M. Chen and S. Zhang, Random Data Cauchy Problem for the Fourth Order Schrödinger Equation with the Second Order Derivative Nonlinearities, Nonlinear Anal., 190 (2020), Art. 111608, 23 pp. doi: 10.1016/j.na.2019.111608.  Google Scholar [8] J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar [9] V. D. Dinh, Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437.   Google Scholar [10] B. Dodson, J. Lührmann and D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Adv. Math., 347 (2019), 619-676.  doi: 10.1016/j.aim.2019.02.001.  Google Scholar [11] K. B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A., 369 (1979), 105-114.   Google Scholar [12] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. Henri Poincare Anal. Non Lineaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar [13] C. C. Hao, L. Hsiao and B. X. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar [14] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb{T}^3)$, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar [15] H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity, preprint, arXiv: 1505.06497. doi: 10.3934/dcds.2016102.  Google Scholar [16] H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar [17] Z. H. Huo and Y. L. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Commun. Partial Differ. Equ., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar [18] B. Ilan, G. Fibich and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math, 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar [19] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), Art. R1336. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar [20] V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar [21] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbb{R}^3$, Commun. Partial Differ. Equ., 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar [22] J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on $\Bbb R^3$, New York J. Math., 22 (2016), 209-227.   Google Scholar [23] B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar [24] B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar [25] J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar [26] M. Ruzhansky, B. X. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar [27] Y. Z. Wang, Global well-posedness for the generalised fourth-order Schrödinger equation, Bull. Aust. Math. Soc., 85 (2012), 371-379.  doi: 10.1017/S0004972711003327.  Google Scholar [28] B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differ. Equ., 232 (2007), 36-73.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar [29] B. X. Wang, L. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces $E^\lambda_{p, q}$ and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

show all references

##### References:
 [1] M. Ben-Artzi, H. Koch and J. C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris. Ser. I, 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar [2] Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in Excursions in Harmonic Analysis, Vol. 4, Birkhäuser/Springer, Cham, (2015), 3–25.  Google Scholar [3] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166 (1994), 1-26.   Google Scholar [4] J. Bourgain, Invariant measures for the $2$D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176 (1996), 421-445.   Google Scholar [5] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar [6] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math., 173 (2008), 477-496.  doi: 10.1007/s00222-008-0123-0.  Google Scholar [7] J. M. Chen and S. Zhang, Random Data Cauchy Problem for the Fourth Order Schrödinger Equation with the Second Order Derivative Nonlinearities, Nonlinear Anal., 190 (2020), Art. 111608, 23 pp. doi: 10.1016/j.na.2019.111608.  Google Scholar [8] J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.  doi: 10.1090/S0002-9947-01-02760-X.  Google Scholar [9] V. D. Dinh, Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437.   Google Scholar [10] B. Dodson, J. Lührmann and D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Adv. Math., 347 (2019), 619-676.  doi: 10.1016/j.aim.2019.02.001.  Google Scholar [11] K. B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A., 369 (1979), 105-114.   Google Scholar [12] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. Henri Poincare Anal. Non Lineaire, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.  Google Scholar [13] C. C. Hao, L. Hsiao and B. X. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.  doi: 10.1016/j.jmaa.2005.06.091.  Google Scholar [14] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb{T}^3)$, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar [15] H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity, preprint, arXiv: 1505.06497. doi: 10.3934/dcds.2016102.  Google Scholar [16] H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar [17] Z. H. Huo and Y. L. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Commun. Partial Differ. Equ., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.  Google Scholar [18] B. Ilan, G. Fibich and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math, 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar [19] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), Art. R1336. doi: 10.1016/0375-9601(95)00752-0.  Google Scholar [20] V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.  Google Scholar [21] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $\mathbb{R}^3$, Commun. Partial Differ. Equ., 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar [22] J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on $\Bbb R^3$, New York J. Math., 22 (2016), 209-227.   Google Scholar [23] B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar [24] B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.  doi: 10.1016/j.jfa.2008.11.009.  Google Scholar [25] J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Mathematics Department, Duke University, Durham, N. C., 1976.  Google Scholar [26] M. Ruzhansky, B. X. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.  doi: 10.1016/j.matpur.2015.09.005.  Google Scholar [27] Y. Z. Wang, Global well-posedness for the generalised fourth-order Schrödinger equation, Bull. Aust. Math. Soc., 85 (2012), 371-379.  doi: 10.1017/S0004972711003327.  Google Scholar [28] B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differ. Equ., 232 (2007), 36-73.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar [29] B. X. Wang, L. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces $E^\lambda_{p, q}$ and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar
 [1] Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 [2] Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093 [3] Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 [4] Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 [5] Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034 [6] Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 [7] Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 [8] Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033 [9] Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15 [10] Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023 [11] Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015 [12] Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781 [13] Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 [14] Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273 [15] Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275 [16] Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 [17] Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072 [18] Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123 [19] Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37 [20] Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

2018 Impact Factor: 0.925

Article outline