[1]
|
N. Aronszajn, Theory of reporudcing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
doi: 10.2307/1990404.
|
[2]
|
P. J. Bickel, Y. Ritov and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, Ann. Statist., 37 (2009), 1705-1732.
doi: 10.1214/08-AOS620.
|
[3]
|
O. Bousquet, A Bennet concentration inequality and its application to suprema of empirical processes, C. R. Math. Acad. Sci. Paris, 334 (2002), 495-550.
doi: 10.1016/S1631-073X(02)02292-6.
|
[4]
|
S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511804441.
|
[5]
|
P. Buhlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications, Springer-Verlag Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-20192-9.
|
[6]
|
T. T. Cai and P. Hall, Prediction in functional linear regression, Ann. Statist., 34 (2006), 2159-2179.
doi: 10.1214/009053606000000830.
|
[7]
|
T. T. Cai and M. Yuan, Minimax and adaptive prediction for functional linear regression, J. Amer. Statist. Assoc., 107 (2012), 1201-1216.
doi: 10.1080/01621459.2012.716337.
|
[8]
|
A. Cuevas, M. Febrero and R. Fraiman, Linear functional regression: The case of fixed design and functional response, Canadian J. Statist., 30 (2002), 285-300.
doi: 10.2307/3315952.
|
[9]
|
D. Donoho, Compressed sensing, IEEE. Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.
|
[10]
|
F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Springer, New York, 2006.
|
[11]
|
X. Ji, J. W. Han, X. Jiang, X. T. Hu, L. Guo, J. G. Han, L. Shao and T. M. Liu, Analysis of music/speech via integration of audio content and functional brain response, Inform. Sci., 297 (2015), 271-282.
doi: 10.1016/j.ins.2014.11.020.
|
[12]
|
D. H. Kong, J. G. Ibrahim, E. Lee and H. Zhu, FLCRM: Functional linear cox regression model, Biometrics, 74 (2018), 109-117.
doi: 10.1111/biom.12748.
|
[13]
|
D. H. Kong, K. J. Xue, F. Yao and H. H. Zhang, Partially functional linear regression in high dimensions, Biometrika, 103 (2016), 147-159.
doi: 10.1093/biomet/asv062.
|
[14]
|
M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2001.
|
[15]
|
P. Muller and S. Van de Geer, The partial linear model in high dimensions, Scand. J. Statist., 42 (2015), 580-608.
doi: 10.1111/sjos.12124.
|
[16]
|
C. Preda and G. Saporta, PLS regression on a stochastic process, Comput. Statist. Data Anal., 48 (2005), 149-158.
doi: 10.1016/j.csda.2003.10.003.
|
[17]
|
J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2$^nd$ edition, Springer, New York, 2005.
|
[18]
|
E. Sanchez-Lozano, G. Tzimiropoulos, B. Martinez, F. De la Torre and M. Valstar, A functional regression approach to facial landmark tracking, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2018), 2037-2050.
doi: 10.1109/TPAMI.2017.2745568.
|
[19]
|
H. Shin and M. H. Lee, On prediction rate in partial functional linear regression, J. Multi. Anal., 103 (2012), 93-106.
doi: 10.1016/j.jmva.2011.06.011.
|
[20]
|
M. Talagrand, New concentration inequalities in product spaces, Invent. Math., 126 (1996), 505-563.
doi: 10.1007/s002220050108.
|
[21]
|
Q. G. Tang and L. S. Cheng, Partial functional linear quantile regression, Sci. China Math., 57 (2014), 2589-2608.
doi: 10.1007/s11425-014-4819-x.
|
[22]
|
J. P. Thivierge, Functional data analysis of cognitive events in EEG, IEEE Int. Confer. Syst. Man Cyber., (2007), 2473–2478.
doi: 10.1109/ICSMC.2007.4413811.
|
[23]
|
R. J. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B, 58 (1996), 267-288.
|
[24]
|
S. Van. de. Geer, Emprical Processes in M-Estimation, Cambridge University Press, New York, 2000.
|
[25]
|
M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_1$-constrainted quadratic programming, IEEE Trans. Inf. Theory, 55 (2009), 2183-2202.
doi: 10.1109/TIT.2009.2016018.
|
[26]
|
F. Yao, H. G. Muller and J. L. Wang, Functional data analysis for sparse longitudinal data, J. Amer. Statist. Assoc., 100 (2005), 577-590.
doi: 10.1198/016214504000001745.
|
[27]
|
Y. Yuan and T. T. Cai, A reproducing kernel Hilbert space approach to functional linear regression, Ann. Statist., 38 (2006), 3412-3444.
doi: 10.1214/09-AOS772.
|
[28]
|
D. D. Yu, L. L. Kong and I. Mizera, Partial functional linear quantile regression for neuroimaging data analysis, Neurocomputing, 195 (2016), 74-87.
doi: 10.1016/j.neucom.2015.08.116.
|