August  2020, 19(8): 4007-4022. doi: 10.3934/cpaa.2020177

Uncompactly supported density estimation with $ L^{1} $ risk

1. 

Department of Applied Mathematics, Beijing University of Technology, Pingle Yuan 100, Beijing, 100124, China

2. 

School of Mathematics and Information Science, Weifang University, Weifang, Shandong, 261061, China

* Corresponding author

Received  June 2019 Revised  January 2020 Published  May 2020

Fund Project: Supported by National Natural Science Foundation of China Grant 11771030, and the Science and Technology Program of Beijing Municipal Commission of Education Grant KM202010005025

The perfect achievements have been made for $ L^{p}\; (1\leq p<+\infty) $ risk estimation, when a density function has compact support. However, there does not exist $ L^{1} $ risk estimation for uncompactly supported densities in general. Motivated by the work of Juditsky & Lambert-Lacroix (A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $ \mathbb{R} $, Bernoulli, 10(2004), 187-220) and Goldenshluger & Lepski (A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $ \mathbb{R}^{d} $, Probab. Theory Relat. Fields., 159(2014), 479-543), we provide an adaptive estimate for a family of density functions not necessarily having compact supports in this paper.

Citation: Kaikai Cao, Youming Liu. Uncompactly supported density estimation with $ L^{1} $ risk. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4007-4022. doi: 10.3934/cpaa.2020177
References:
[1]

L. Birgé, On estimating a density using hellinger distance and some other strange facts, Probab. Theory Relat. Fields, 71 (1986), 271-291.  doi: 10.1007/BF00332312.  Google Scholar

[2]

L. Birgé, Model selection for density estimation with $L^2$-loss, Probab. Theory Relat. Fields, 158 (2014), 533-574.  doi: 10.1007/s00440-013-0488-x.  Google Scholar

[3]

J. Bretagnolle and C. Huber, Estimation des densites: risque minimax, Z Wahrscheinlichkeitstheorie Verw Geb., 47 (1979), 119-137.  doi: 10.1007/BF00535278.  Google Scholar

[4]

K. K. Cao and Y. M. Liu, On the Reynaud-Bouret–Rivoiard–Tuleau-Malot problem, Int. J. Wavelets Multiresolut. Inform. Process., 16 (2018), 1850038. doi: 10.1142/S0219691318500388.  Google Scholar

[5]

L. Devroye and L. Györfi, Nonparametric Density Estimation: The $L^{1}$ View, Wiley, New York, 1985.  Google Scholar

[6]

D. L. DonohoI. M. JohnstoneG. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508-539.  doi: 10.1214/aos/1032894451.  Google Scholar

[7] E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistics model, Cambridge university Press, Cambridge, 2015.  doi: 10.1017/CBO9781107337862.  Google Scholar
[8]

A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Relat Fields, 159 (2014), 479-543.  doi: 10.1007/s00440-013-0512-1.  Google Scholar

[9]

W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-2222-4.  Google Scholar

[10]

A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187-220.  doi: 10.3150/bj/1082380217.  Google Scholar

[11]

G. Kerkyacharian and D. Picard, Density estimation in Besov space, Statist. Probab. Lett., 13 (1992), 15-24.  doi: 10.1016/0167-7152(92)90231-S.  Google Scholar

[12]

O. Lepski, Multivariate estimation under sup-norm loss: oracle approach, adaption and independence structure, Ann. Statist., 41 (2013), 1005-1034.  doi: 10.1214/13-AOS1109.  Google Scholar

[13]

P. Reynaud-BouretV. Rivoirard and C. Tuleau-Malot, Adaptive density estimation: a curse of support?, J. Statist. Plan. Infer., 141 (2011), 115-139.  doi: 10.1016/j.jspi.2010.05.017.  Google Scholar

show all references

References:
[1]

L. Birgé, On estimating a density using hellinger distance and some other strange facts, Probab. Theory Relat. Fields, 71 (1986), 271-291.  doi: 10.1007/BF00332312.  Google Scholar

[2]

L. Birgé, Model selection for density estimation with $L^2$-loss, Probab. Theory Relat. Fields, 158 (2014), 533-574.  doi: 10.1007/s00440-013-0488-x.  Google Scholar

[3]

J. Bretagnolle and C. Huber, Estimation des densites: risque minimax, Z Wahrscheinlichkeitstheorie Verw Geb., 47 (1979), 119-137.  doi: 10.1007/BF00535278.  Google Scholar

[4]

K. K. Cao and Y. M. Liu, On the Reynaud-Bouret–Rivoiard–Tuleau-Malot problem, Int. J. Wavelets Multiresolut. Inform. Process., 16 (2018), 1850038. doi: 10.1142/S0219691318500388.  Google Scholar

[5]

L. Devroye and L. Györfi, Nonparametric Density Estimation: The $L^{1}$ View, Wiley, New York, 1985.  Google Scholar

[6]

D. L. DonohoI. M. JohnstoneG. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508-539.  doi: 10.1214/aos/1032894451.  Google Scholar

[7] E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistics model, Cambridge university Press, Cambridge, 2015.  doi: 10.1017/CBO9781107337862.  Google Scholar
[8]

A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Relat Fields, 159 (2014), 479-543.  doi: 10.1007/s00440-013-0512-1.  Google Scholar

[9]

W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-2222-4.  Google Scholar

[10]

A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187-220.  doi: 10.3150/bj/1082380217.  Google Scholar

[11]

G. Kerkyacharian and D. Picard, Density estimation in Besov space, Statist. Probab. Lett., 13 (1992), 15-24.  doi: 10.1016/0167-7152(92)90231-S.  Google Scholar

[12]

O. Lepski, Multivariate estimation under sup-norm loss: oracle approach, adaption and independence structure, Ann. Statist., 41 (2013), 1005-1034.  doi: 10.1214/13-AOS1109.  Google Scholar

[13]

P. Reynaud-BouretV. Rivoirard and C. Tuleau-Malot, Adaptive density estimation: a curse of support?, J. Statist. Plan. Infer., 141 (2011), 115-139.  doi: 10.1016/j.jspi.2010.05.017.  Google Scholar

Figure 1.  Graph of $ g_l $
[1]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[4]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[5]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[8]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[9]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[10]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[13]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[14]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[15]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[16]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[17]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[18]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (57)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]