The perfect achievements have been made for $ L^{p}\; (1\leq p<+\infty) $ risk estimation, when a density function has compact support. However, there does not exist $ L^{1} $ risk estimation for uncompactly supported densities in general. Motivated by the work of Juditsky & Lambert-Lacroix (A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $ \mathbb{R} $, Bernoulli, 10(2004), 187-220) and Goldenshluger & Lepski (A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $ \mathbb{R}^{d} $, Probab. Theory Relat. Fields., 159(2014), 479-543), we provide an adaptive estimate for a family of density functions not necessarily having compact supports in this paper.
Citation: |
[1] | L. Birgé, On estimating a density using hellinger distance and some other strange facts, Probab. Theory Relat. Fields, 71 (1986), 271-291. doi: 10.1007/BF00332312. |
[2] | L. Birgé, Model selection for density estimation with $L^2$-loss, Probab. Theory Relat. Fields, 158 (2014), 533-574. doi: 10.1007/s00440-013-0488-x. |
[3] | J. Bretagnolle and C. Huber, Estimation des densites: risque minimax, Z Wahrscheinlichkeitstheorie Verw Geb., 47 (1979), 119-137. doi: 10.1007/BF00535278. |
[4] | K. K. Cao and Y. M. Liu, On the Reynaud-Bouret–Rivoiard–Tuleau-Malot problem, Int. J. Wavelets Multiresolut. Inform. Process., 16 (2018), 1850038. doi: 10.1142/S0219691318500388. |
[5] | L. Devroye and L. Györfi, Nonparametric Density Estimation: The $L^{1}$ View, Wiley, New York, 1985. |
[6] | D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508-539. doi: 10.1214/aos/1032894451. |
[7] | E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistics model, Cambridge university Press, Cambridge, 2015. doi: 10.1017/CBO9781107337862. |
[8] | A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on $\mathbb{R}^{d}$, Probab. Theory Relat Fields, 159 (2014), 479-543. doi: 10.1007/s00440-013-0512-1. |
[9] | W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov., Wavelets, Approximation and Statistical Applications, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-2222-4. |
[10] | A. Juditsky and S. Lambert-Lacroix, On minimax density estimation on $\mathbb{R}$, Bernoulli, 10 (2004), 187-220. doi: 10.3150/bj/1082380217. |
[11] | G. Kerkyacharian and D. Picard, Density estimation in Besov space, Statist. Probab. Lett., 13 (1992), 15-24. doi: 10.1016/0167-7152(92)90231-S. |
[12] | O. Lepski, Multivariate estimation under sup-norm loss: oracle approach, adaption and independence structure, Ann. Statist., 41 (2013), 1005-1034. doi: 10.1214/13-AOS1109. |
[13] | P. Reynaud-Bouret, V. Rivoirard and C. Tuleau-Malot, Adaptive density estimation: a curse of support?, J. Statist. Plan. Infer., 141 (2011), 115-139. doi: 10.1016/j.jspi.2010.05.017. |