August  2020, 19(8): 4097-4109. doi: 10.3934/cpaa.2020182

Representations for the inverses of certain operators

1. 

Lucian Blaga University of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No.5-7, RO-550012 Sibiu, Romania

2. 

Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Str. Memorandumului nr. 28 Cluj-Napoca, Romania

3. 

Babes-Bolyai University, FSEGA, Department of Statistics-Forecasts-Mathematics, Cluj-Napoca, Romania

* Corresponding author

Received  August 2019 Revised  November 2019 Published  May 2020

Fund Project: The first author is supported by Lucian Blaga University of Sibiu & Hasso Plattner Foundation research grants LBUS-IRG-2019-05

Inverses of certain positive linear operators have been investigated in several recent papers, in connection with problems like decomposition of classical operators, representation of Lagrange-type operators, asymptotic formulas of Voronovskaja type. Motivated by such researches, in this paper we give some representations for the inverses of certain positive linear operators, as Bernstein, Beta, Bernstein - Durrmeyer, genuine Bernstein - Durrmeyer and Kantorovich operators. Moreover, some Voronovskaja type formulas for the inverses of these operators are obtained. Several techniques are used in order to get such results.

Citation: Ana-Maria Acu, Madalina Dancs, Voichiţa Adriana Radu. Representations for the inverses of certain operators. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4097-4109. doi: 10.3934/cpaa.2020182
References:
[1]

U. Abel and M. Ivan, Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory Appl., 16 (2000), 85-93.   Google Scholar

[2]

F. Alda and B. I. P. Rubinstein, The Bernstein mechanism: function release under differential privacy, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 1705–1711. Google Scholar

[3]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in Approximation Theory and Functional Analysis (eds. C. K. Chui), Boston, Acad. Press, (1991), 25–46.  Google Scholar

[4]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights: The cases $p = 1$ and $p = \infty$, in Approximation, Interpolation and Summation (eds. S. Baron and D. Leviatan), Israel Math. Conf. Proc., 4, Ramat Gan: Bar-Ilan Univ., (1991), 51–62.  Google Scholar

[5]

W. Chen, On the modified Bernstein-Durrmeyer operator, in Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987. Google Scholar

[6]

M. M. Derriennic, De La Vallée Poussin and Bernstein-type operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D. H. Mache), Proc. IDoMAT 95, Mathematical Research, Vol. 86, Akademic Verlag, Berlin, (1995), 71–84.  Google Scholar

[7]

H. H. Gonska, On the composition and decomposition of positive linear operators, in Approximation Theory and its Applications (Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31. Kiev. 1999). Kiev: Natsional. Akad. Nauk Ukraini, Inst. Mat. (2000), 161–180.  Google Scholar

[8]

H. Gonska, M. Heilmann, A. Lupaș and I. Rașa, On the composition and decomposition of positive linear operators Ⅲ: A non-trivial decomposition of the Bernstein operator, preprint, arXiv: 1204.2723v1. doi: 10.1080/01630563.2014.951772.  Google Scholar

[9]

H. H. Gonska and I. Rașa, On the composition and decomposition of positive linear operators (Ⅱ), Stud. Sci. Math. Hung., 47 (2010), 948-461.  doi: 10.1556/SScMath.2009.1144.  Google Scholar

[10]

H. Gonska, I. Rașa and E. D. Stănilă, Beta Operators with Jacobi Weights, in Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol 2013, 99–112, Prof. Marin Drinov Academic Publishing House, Sofia, 2014.  Google Scholar

[11]

H. H. GonskaI. Rașa and E. D. Stănilă, Lagrange-type operators associated with $U^Q_n$, Publications de l'Institut Matheématique, Nouvelle série, 96 (2014), 159-168.  doi: 10.2298/PIM1410159G.  Google Scholar

[12]

H. Gonska and R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (2010), 783-799.  doi: 10.1007/s10587-010-0049-8.  Google Scholar

[13]

H. Gonska and R. Păltănea, Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913-922.  doi: 10.1007/s11253-010-0413-8.  Google Scholar

[14]

T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, in Proc. Conf. Constructive Theory of Functions (eds. Bl. Sendov et al.), Varna 1987, Publ. House Bulg. Acad. Sci., Sofia, (1988), 166–173.  Google Scholar

[15]

T. N. T. Goodman and A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica, 5 (1991), 129-145.   Google Scholar

[16]

M. Heilmann, F. Nasaireh and I. Rașa, Complements to Voronovskaja's formula, in Mathematics and Computing (eds. D. Ghosh et al.), Chapter 11, Springer Proceedings in Mathematics & Statistics 253, Springer Nature Singapore Pte Ltd., 2018. doi: 10.1007/978-981-13-2095-8.  Google Scholar

[17]

M. Heilmann, F. Nasaireh and I. Rașa, Beta and related operators revisited, in Proceedings of Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol, (2016), 175–185. Prof. Marin Drinov Academic Publishing House, Sofia, 2018,175–185.  Google Scholar

[18]

M. Heilmann and I. Rașa, On the decomposition of Bernstein operators, Numer. Funct. Anal. Optim., 36 (2015), 72-85.  doi: 10.1080/01630563.2014.951772.  Google Scholar

[19]

L. V. Kantorovich, Sur certains developpements suivant les polynômes de la forme de S. Bernstein Ⅰ, Ⅱ, Dokl. Akad. Nauk. SSSR, (1930), 563–568,595–600. Google Scholar

[20]

A. Lupaș and L. Lupaș, Polynomials of binomial type and approximation operators, Stud. Univ. Babeș-Bolyai Math., 32 (1987), 61-69.   Google Scholar

[21]

A. Lupaș, The approximation by means of some linear positive operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D.H. Mache), Proc. IDoMAT 95, Methematical Research, Vol. 86,201–229, Academic Verlag, Berlin, 1995.  Google Scholar

[22]

G. Mühlbach, Verallgemeinerungen der Bernstein- und der Lagrangepolynome, Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu (Rev. Roumaine Math. Pure Appl.), 15 (1970), 1235–1252.  Google Scholar

[23]

G. Mühlbach, Rekursionsformeln für die zentralen Momente der Polya- und der Beta-Verteilung, Metrika, 19 (1972), 171-177.  doi: 10.1007/BF01893292.  Google Scholar

[24]

F. Nasaireh and I. Rașa, Another Look at Voronovskaja Type Formulas, J. Math. Inequal., 12 (2018), 95-105.  doi: 10.7153/jmi-2018-12-07.  Google Scholar

[25]

F. Nasaireh, Voronovskaja-type formulas and applications, General Math., 25 (2017), 37-43.   Google Scholar

[26]

T. NeerA. M. Acu and P. N. Agrawal, Bezier variant of genuine-Durrmeyer type operators based on Polya distribution, Carpathian J. Math., 33 (2017), 73-86.   Google Scholar

[27]

R. Păltănea, A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex. (Cluj-Napoca), 5 (2007), 109–117. Google Scholar

[28]

R. Păltănea, Sur un opérateur polynomial defini sur l'ensemble des fonctions intégrables, in Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), (1983), 101–106.  Google Scholar

[29]

G. Szegö, Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, Vol. 23, 1939.  Google Scholar

[30]

T. Vladislav and I. Rașa, Analiză Numerică. Elemente introductive, Editura Tehnică, Bucureti, 1997. (in Romanian) Google Scholar

[31]

T. Vladislav, I. Rașa, Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureti, 1999. (in Romanian) Google Scholar

[32]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

show all references

References:
[1]

U. Abel and M. Ivan, Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory Appl., 16 (2000), 85-93.   Google Scholar

[2]

F. Alda and B. I. P. Rubinstein, The Bernstein mechanism: function release under differential privacy, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 1705–1711. Google Scholar

[3]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in Approximation Theory and Functional Analysis (eds. C. K. Chui), Boston, Acad. Press, (1991), 25–46.  Google Scholar

[4]

H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights: The cases $p = 1$ and $p = \infty$, in Approximation, Interpolation and Summation (eds. S. Baron and D. Leviatan), Israel Math. Conf. Proc., 4, Ramat Gan: Bar-Ilan Univ., (1991), 51–62.  Google Scholar

[5]

W. Chen, On the modified Bernstein-Durrmeyer operator, in Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987. Google Scholar

[6]

M. M. Derriennic, De La Vallée Poussin and Bernstein-type operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D. H. Mache), Proc. IDoMAT 95, Mathematical Research, Vol. 86, Akademic Verlag, Berlin, (1995), 71–84.  Google Scholar

[7]

H. H. Gonska, On the composition and decomposition of positive linear operators, in Approximation Theory and its Applications (Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 31. Kiev. 1999). Kiev: Natsional. Akad. Nauk Ukraini, Inst. Mat. (2000), 161–180.  Google Scholar

[8]

H. Gonska, M. Heilmann, A. Lupaș and I. Rașa, On the composition and decomposition of positive linear operators Ⅲ: A non-trivial decomposition of the Bernstein operator, preprint, arXiv: 1204.2723v1. doi: 10.1080/01630563.2014.951772.  Google Scholar

[9]

H. H. Gonska and I. Rașa, On the composition and decomposition of positive linear operators (Ⅱ), Stud. Sci. Math. Hung., 47 (2010), 948-461.  doi: 10.1556/SScMath.2009.1144.  Google Scholar

[10]

H. Gonska, I. Rașa and E. D. Stănilă, Beta Operators with Jacobi Weights, in Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol 2013, 99–112, Prof. Marin Drinov Academic Publishing House, Sofia, 2014.  Google Scholar

[11]

H. H. GonskaI. Rașa and E. D. Stănilă, Lagrange-type operators associated with $U^Q_n$, Publications de l'Institut Matheématique, Nouvelle série, 96 (2014), 159-168.  doi: 10.2298/PIM1410159G.  Google Scholar

[12]

H. Gonska and R. Păltănea, Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (2010), 783-799.  doi: 10.1007/s10587-010-0049-8.  Google Scholar

[13]

H. Gonska and R. Păltănea, Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913-922.  doi: 10.1007/s11253-010-0413-8.  Google Scholar

[14]

T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, in Proc. Conf. Constructive Theory of Functions (eds. Bl. Sendov et al.), Varna 1987, Publ. House Bulg. Acad. Sci., Sofia, (1988), 166–173.  Google Scholar

[15]

T. N. T. Goodman and A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica, 5 (1991), 129-145.   Google Scholar

[16]

M. Heilmann, F. Nasaireh and I. Rașa, Complements to Voronovskaja's formula, in Mathematics and Computing (eds. D. Ghosh et al.), Chapter 11, Springer Proceedings in Mathematics & Statistics 253, Springer Nature Singapore Pte Ltd., 2018. doi: 10.1007/978-981-13-2095-8.  Google Scholar

[17]

M. Heilmann, F. Nasaireh and I. Rașa, Beta and related operators revisited, in Proceedings of Constructive Theory of Functions (eds. K. Ivanov, G. Nikolov and R. Uluchev), Sozopol, (2016), 175–185. Prof. Marin Drinov Academic Publishing House, Sofia, 2018,175–185.  Google Scholar

[18]

M. Heilmann and I. Rașa, On the decomposition of Bernstein operators, Numer. Funct. Anal. Optim., 36 (2015), 72-85.  doi: 10.1080/01630563.2014.951772.  Google Scholar

[19]

L. V. Kantorovich, Sur certains developpements suivant les polynômes de la forme de S. Bernstein Ⅰ, Ⅱ, Dokl. Akad. Nauk. SSSR, (1930), 563–568,595–600. Google Scholar

[20]

A. Lupaș and L. Lupaș, Polynomials of binomial type and approximation operators, Stud. Univ. Babeș-Bolyai Math., 32 (1987), 61-69.   Google Scholar

[21]

A. Lupaș, The approximation by means of some linear positive operators, in Approximation Theory (eds. M. W. Müller, M. Felten and D.H. Mache), Proc. IDoMAT 95, Methematical Research, Vol. 86,201–229, Academic Verlag, Berlin, 1995.  Google Scholar

[22]

G. Mühlbach, Verallgemeinerungen der Bernstein- und der Lagrangepolynome, Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu (Rev. Roumaine Math. Pure Appl.), 15 (1970), 1235–1252.  Google Scholar

[23]

G. Mühlbach, Rekursionsformeln für die zentralen Momente der Polya- und der Beta-Verteilung, Metrika, 19 (1972), 171-177.  doi: 10.1007/BF01893292.  Google Scholar

[24]

F. Nasaireh and I. Rașa, Another Look at Voronovskaja Type Formulas, J. Math. Inequal., 12 (2018), 95-105.  doi: 10.7153/jmi-2018-12-07.  Google Scholar

[25]

F. Nasaireh, Voronovskaja-type formulas and applications, General Math., 25 (2017), 37-43.   Google Scholar

[26]

T. NeerA. M. Acu and P. N. Agrawal, Bezier variant of genuine-Durrmeyer type operators based on Polya distribution, Carpathian J. Math., 33 (2017), 73-86.   Google Scholar

[27]

R. Păltănea, A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex. (Cluj-Napoca), 5 (2007), 109–117. Google Scholar

[28]

R. Păltănea, Sur un opérateur polynomial defini sur l'ensemble des fonctions intégrables, in Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), (1983), 101–106.  Google Scholar

[29]

G. Szegö, Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, Vol. 23, 1939.  Google Scholar

[30]

T. Vladislav and I. Rașa, Analiză Numerică. Elemente introductive, Editura Tehnică, Bucureti, 1997. (in Romanian) Google Scholar

[31]

T. Vladislav, I. Rașa, Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureti, 1999. (in Romanian) Google Scholar

[32]

D. X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (111)
  • HTML views (63)
  • Cited by (0)

[Back to Top]