
-
Previous Article
Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
- CPAA Home
- This Issue
-
Next Article
Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems
First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise
1. | Research and Evaluation Division, Public Health Wales, Cardiff, UK |
2. | Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK |
3. | Accounting and Finance Department, School of Management, Swansea University, Swansea, UK |
The aim of this paper is twofold. Firstly, we derive an explicit expression of the (theoretical) solutions of stochastic differential equations with affine coefficients driven by $ \alpha $-stable white noise. This is done by means of Itô formula. Secondly, we develop a detection algorithm for the first jump time in simulation of sampling trajectories which are described by the solutions. The algorithm is carried out through a multivariate Lagrange interpolation approach. To this end, we utilise a computer simulation algorithm in MATLAB to visualise the sampling trajectories of the jump-diffusions for two combinations of parameters arising in the modelling structure of stochastic differential equations with affine coefficients.
References:
[1] |
D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.
doi: 10.1017/CBO9780511755323.![]() ![]() ![]() |
[2] |
C. Bardgett, E. Gourier and M. Leippold,
Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.
|
[3] |
A. Barletta, P. Magistris and D. Sloth,
It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.
doi: 10.1016/j.jedc.2018.11.008. |
[4] |
O. Barndorff-Nielsen,
Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.
doi: 10.1111/1467-9469.00045. |
[5] |
J. Campbell, S. Giglio, C. Polk and R. Turley,
An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.
|
[6] |
J. Y. Campbell, A. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.
![]() |
[7] |
J. C. Cox, J. E. Ingersoll and S. A. Ross,
A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242. |
[8] |
M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. |
[9] |
H. Du, J. Wu and W. Yang,
On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.
|
[10] |
D. Duffie, D. Filipović and W. Schachermayer,
Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.
doi: 10.1214/aoap/1060202833. |
[11] |
D. Duffie, J. Pan and K. Singleton,
Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.
doi: 10.1111/1468-0262.00164. |
[12] |
A. Fiche, J. C. Cexus, A. Martin and A. Khenchaf,
Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.
|
[13] |
R. Giacometti, M. Bertocchi, S. T. Rachev and F. J. Fabozzi,
Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.
doi: 10.1080/14697680701442731. |
[14] |
M. Hain, M. Uhrig-Homburg and N. Unger,
Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.
|
[15] |
A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.
![]() ![]() |
[16] |
S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. |
[17] |
R. Jarrow,
Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.
|
[18] |
W. E. Leland, M. S. Taqqu, W. Willinger and D. W. Wilson,
On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.
|
[19] | |
[20] |
P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. |
[21] |
B. Mandelbrot,
The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.
|
[22] |
G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.
![]() |
[23] |
M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag.
doi: 10.1007/3-540-59222-9. |
[24] |
J. Song and J. Wu,
A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.
doi: 10.1080/03610926.2018.1500602. |
[25] |
O. Vasicek,
An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.
|
[26] |
J. Wu and W. Yang,
Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.
doi: 10.1016/j.mcm.2012.06.038. |
[27] |
V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986. |
[28] |
C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. |
show all references
References:
[1] |
D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.
doi: 10.1017/CBO9780511755323.![]() ![]() ![]() |
[2] |
C. Bardgett, E. Gourier and M. Leippold,
Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.
|
[3] |
A. Barletta, P. Magistris and D. Sloth,
It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.
doi: 10.1016/j.jedc.2018.11.008. |
[4] |
O. Barndorff-Nielsen,
Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.
doi: 10.1111/1467-9469.00045. |
[5] |
J. Campbell, S. Giglio, C. Polk and R. Turley,
An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.
|
[6] |
J. Y. Campbell, A. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.
![]() |
[7] |
J. C. Cox, J. E. Ingersoll and S. A. Ross,
A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242. |
[8] |
M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. |
[9] |
H. Du, J. Wu and W. Yang,
On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.
|
[10] |
D. Duffie, D. Filipović and W. Schachermayer,
Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.
doi: 10.1214/aoap/1060202833. |
[11] |
D. Duffie, J. Pan and K. Singleton,
Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.
doi: 10.1111/1468-0262.00164. |
[12] |
A. Fiche, J. C. Cexus, A. Martin and A. Khenchaf,
Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.
|
[13] |
R. Giacometti, M. Bertocchi, S. T. Rachev and F. J. Fabozzi,
Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.
doi: 10.1080/14697680701442731. |
[14] |
M. Hain, M. Uhrig-Homburg and N. Unger,
Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.
|
[15] |
A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.
![]() ![]() |
[16] |
S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. |
[17] |
R. Jarrow,
Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.
|
[18] |
W. E. Leland, M. S. Taqqu, W. Willinger and D. W. Wilson,
On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.
|
[19] | |
[20] |
P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. |
[21] |
B. Mandelbrot,
The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.
|
[22] |
G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.
![]() |
[23] |
M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag.
doi: 10.1007/3-540-59222-9. |
[24] |
J. Song and J. Wu,
A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.
doi: 10.1080/03610926.2018.1500602. |
[25] |
O. Vasicek,
An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.
|
[26] |
J. Wu and W. Yang,
Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.
doi: 10.1016/j.mcm.2012.06.038. |
[27] |
V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986. |
[28] |
C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. |



t | ||||||
10 | 1 | 100 | 0.5 | 1.5 | 0.08203 | -63.86 |
1 | 0.25 | 100 | 0.75 | 1.25 | 0.1855 | -303.2 |
1 | 100 | 1 | 0.75 | 1.75 | 0.1035 | 122.5 |
1 | 100 | 0.25 | 0.75 | 1.5 | 0.207 | -896.1 |
10 | 100 | 0.25 | 0.5 | 1.25 | 0.3301 | 252.1 |
100 | 100 | 1 | 0.25 | 1.75 | 0.1934 | -3028000 |
10 | 1 | 0.25 | 0.25 | 1.25 | 0.5762 | 533.7 |
t | ||||||
10 | 1 | 100 | 0.5 | 1.5 | 0.08203 | -63.86 |
1 | 0.25 | 100 | 0.75 | 1.25 | 0.1855 | -303.2 |
1 | 100 | 1 | 0.75 | 1.75 | 0.1035 | 122.5 |
1 | 100 | 0.25 | 0.75 | 1.5 | 0.207 | -896.1 |
10 | 100 | 0.25 | 0.5 | 1.25 | 0.3301 | 252.1 |
100 | 100 | 1 | 0.25 | 1.75 | 0.1934 | -3028000 |
10 | 1 | 0.25 | 0.25 | 1.25 | 0.5762 | 533.7 |
t | ||||||
10 | 0.25 | 1 | 1.5 | 0.5 | 0.1973 | -91.87 |
10 | 1 | 100 | 1.5 | 0.25 | 0.01953 | 95.72 |
1 | 100 | 1 | 1.25 | 0.5 | 0.04492 | 305.9 |
100 | 1 | 0.25 | 1.5 | 0.25 | 0.1211 | 346 |
1 | 1 | 100 | 1.75 | 0.5 | 0.09766 | 311.1 |
100 | 1 | 100 | 1.5 | 0.5 | 0.05273 | -242.9 |
10 | 1 | 0.25 | 1.75 | 0.75 | 0.5742 | -105.1 |
t | ||||||
10 | 0.25 | 1 | 1.5 | 0.5 | 0.1973 | -91.87 |
10 | 1 | 100 | 1.5 | 0.25 | 0.01953 | 95.72 |
1 | 100 | 1 | 1.25 | 0.5 | 0.04492 | 305.9 |
100 | 1 | 0.25 | 1.5 | 0.25 | 0.1211 | 346 |
1 | 1 | 100 | 1.75 | 0.5 | 0.09766 | 311.1 |
100 | 1 | 100 | 1.5 | 0.5 | 0.05273 | -242.9 |
10 | 1 | 0.25 | 1.75 | 0.75 | 0.5742 | -105.1 |
[1] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[2] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 883-901. doi: 10.3934/dcdsb.2021072 |
[3] |
Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021058 |
[4] |
Junjie Zhang, Shenzhou Zheng, Haiyan Yu. $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2777-2796. doi: 10.3934/cpaa.2020121 |
[5] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[6] |
Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116 |
[7] |
Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164 |
[8] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440 |
[9] |
Luisa Malaguti, Stefania Perrotta, Valentina Taddei. $ L^p $-exact controllability of partial differential equations with nonlocal terms. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021053 |
[10] |
Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 |
[11] |
Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 |
[12] |
Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087 |
[13] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[14] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Renormalized solutions for stochastic $ p $-Laplace equations with $ L^1 $-initial data: The case of multiplicative noise. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3979-4002. doi: 10.3934/dcds.2022041 |
[15] |
Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096 |
[16] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[17] |
Sel Ly, Nicolas Privault. $ G $-expectation approach to stochastic ordering. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021012 |
[18] |
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001 |
[19] |
Luigi C. Berselli, Argus Adrian Dunca, Roger Lewandowski, Dinh Duong Nguyen. Modeling error of $ \alpha $-models of turbulence on a two-dimensional torus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4613-4643. doi: 10.3934/dcdsb.2020305 |
[20] |
Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]