• Previous Article
    Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
  • CPAA Home
  • This Issue
  • Next Article
    Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems
August  2020, 19(8): 4127-4142. doi: 10.3934/cpaa.2020184

First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise

1. 

Research and Evaluation Division, Public Health Wales, Cardiff, UK

2. 

Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK

3. 

Accounting and Finance Department, School of Management, Swansea University, Swansea, UK

* Corresponding author

Received  September 2019 Revised  March 2020 Published  May 2020

The aim of this paper is twofold. Firstly, we derive an explicit expression of the (theoretical) solutions of stochastic differential equations with affine coefficients driven by $ \alpha $-stable white noise. This is done by means of Itô formula. Secondly, we develop a detection algorithm for the first jump time in simulation of sampling trajectories which are described by the solutions. The algorithm is carried out through a multivariate Lagrange interpolation approach. To this end, we utilise a computer simulation algorithm in MATLAB to visualise the sampling trajectories of the jump-diffusions for two combinations of parameters arising in the modelling structure of stochastic differential equations with affine coefficients.

Citation: Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184
References:
[1] D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

C. BardgettE. Gourier and M. Leippold, Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.   Google Scholar

[3]

A. BarlettaP. Magistris and D. Sloth, It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.  doi: 10.1016/j.jedc.2018.11.008.  Google Scholar

[4]

O. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.  doi: 10.1111/1467-9469.00045.  Google Scholar

[5]

J. CampbellS. GiglioC. Polk and R. Turley, An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.   Google Scholar

[6] J. Y. CampbellA. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.   Google Scholar
[7]

J. C. CoxJ. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. Google Scholar

[9]

H. DuJ. Wu and W. Yang, On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.   Google Scholar

[10]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[11]

D. DuffieJ. Pan and K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.  doi: 10.1111/1468-0262.00164.  Google Scholar

[12]

A. FicheJ. C. CexusA. Martin and A. Khenchaf, Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.   Google Scholar

[13]

R. GiacomettiM. BertocchiS. T. Rachev and F. J. Fabozzi, Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.  doi: 10.1080/14697680701442731.  Google Scholar

[14]

M. HainM. Uhrig-Homburg and N. Unger, Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.   Google Scholar

[15] A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.   Google Scholar
[16]

S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. Google Scholar

[17]

R. Jarrow, Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.   Google Scholar

[18]

W. E. LelandM. S. TaqquW. Willinger and D. W. Wilson, On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.   Google Scholar

[19]

P. Lévy, Calcul des probabilités, Gauther-Villars, 1925. Google Scholar

[20]

P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. Google Scholar

[21]

B. Mandelbrot, The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.   Google Scholar

[22] G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.   Google Scholar
[23]

M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag. doi: 10.1007/3-540-59222-9.  Google Scholar

[24]

J. Song and J. Wu, A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.  doi: 10.1080/03610926.2018.1500602.  Google Scholar

[25]

O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.   Google Scholar

[26]

J. Wu and W. Yang, Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.  doi: 10.1016/j.mcm.2012.06.038.  Google Scholar

[27]

V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986.  Google Scholar

[28]

C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. Google Scholar

show all references

References:
[1] D. Applebaum, L$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511755323.  Google Scholar
[2]

C. BardgettE. Gourier and M. Leippold, Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618.   Google Scholar

[3]

A. BarlettaP. Magistris and D. Sloth, It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.  doi: 10.1016/j.jedc.2018.11.008.  Google Scholar

[4]

O. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.  doi: 10.1111/1467-9469.00045.  Google Scholar

[5]

J. CampbellS. GiglioC. Polk and R. Turley, An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233.   Google Scholar

[6] J. Y. CampbellA. W. C. Lo and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.   Google Scholar
[7]

J. C. CoxJ. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002. Google Scholar

[9]

H. DuJ. Wu and W. Yang, On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158.   Google Scholar

[10]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[11]

D. DuffieJ. Pan and K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.  doi: 10.1111/1468-0262.00164.  Google Scholar

[12]

A. FicheJ. C. CexusA. Martin and A. Khenchaf, Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520.   Google Scholar

[13]

R. GiacomettiM. BertocchiS. T. Rachev and F. J. Fabozzi, Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.  doi: 10.1080/14697680701442731.  Google Scholar

[14]

M. HainM. Uhrig-Homburg and N. Unger, Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63.   Google Scholar

[15] A. Janicki and A. Weron, Simulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993.   Google Scholar
[16]

S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf. Google Scholar

[17]

R. Jarrow, Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198.   Google Scholar

[18]

W. E. LelandM. S. TaqquW. Willinger and D. W. Wilson, On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193.   Google Scholar

[19]

P. Lévy, Calcul des probabilités, Gauther-Villars, 1925. Google Scholar

[20]

P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937. Google Scholar

[21]

B. Mandelbrot, The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106.   Google Scholar

[22] G. Samorodnitsky and M. S. Taqqu, Stable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994.   Google Scholar
[23]

M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag. doi: 10.1007/3-540-59222-9.  Google Scholar

[24]

J. Song and J. Wu, A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.  doi: 10.1080/03610926.2018.1500602.  Google Scholar

[25]

O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188.   Google Scholar

[26]

J. Wu and W. Yang, Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.  doi: 10.1016/j.mcm.2012.06.038.  Google Scholar

[27]

V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986.  Google Scholar

[28]

C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013. Google Scholar

Figure 1.  $ \alpha_1<1 $ and $ \alpha_2>1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10
Figure 2.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \lambda $ changes when $ \alpha_1 $ = 0.5 and $ \alpha_2 $ = 1.5
Figure 3.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 0.25 and $ \alpha_2 $ = 1.75
Figure 4.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10
Figure 5.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 10 and $ \mu_2 $ = 1
Figure 6.  $ \alpha_1>1 $ and $ \alpha_2<1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 1.5 and $ \alpha_2 $ = 0.5
Table 1.  Data processed for sample trajectories when $ \alpha_1<1 $ and $ \alpha_2>1 $
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 1 100 0.5 1.5 0.08203 -63.86
1 0.25 100 0.75 1.25 0.1855 -303.2
1 100 1 0.75 1.75 0.1035 122.5
1 100 0.25 0.75 1.5 0.207 -896.1
10 100 0.25 0.5 1.25 0.3301 252.1
100 100 1 0.25 1.75 0.1934 -3028000
10 1 0.25 0.25 1.25 0.5762 533.7
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 1 100 0.5 1.5 0.08203 -63.86
1 0.25 100 0.75 1.25 0.1855 -303.2
1 100 1 0.75 1.75 0.1035 122.5
1 100 0.25 0.75 1.5 0.207 -896.1
10 100 0.25 0.5 1.25 0.3301 252.1
100 100 1 0.25 1.75 0.1934 -3028000
10 1 0.25 0.25 1.25 0.5762 533.7
Table 2.  Data processed for sample trajectories when $ \alpha_1>1 $ and $ \alpha_2<1 $
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 0.25 1 1.5 0.5 0.1973 -91.87
10 1 100 1.5 0.25 0.01953 95.72
1 100 1 1.25 0.5 0.04492 305.9
100 1 0.25 1.5 0.25 0.1211 346
1 1 100 1.75 0.5 0.09766 311.1
100 1 100 1.5 0.5 0.05273 -242.9
10 1 0.25 1.75 0.75 0.5742 -105.1
$ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
10 0.25 1 1.5 0.5 0.1973 -91.87
10 1 100 1.5 0.25 0.01953 95.72
1 100 1 1.25 0.5 0.04492 305.9
100 1 0.25 1.5 0.25 0.1211 346
1 1 100 1.75 0.5 0.09766 311.1
100 1 100 1.5 0.5 0.05273 -242.9
10 1 0.25 1.75 0.75 0.5742 -105.1
[1]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[2]

Junjie Zhang, Shenzhou Zheng, Haiyan Yu. $ L^{p(\cdot)} $-regularity of Hessian for nondivergence parabolic and elliptic equations with measurable coefficients. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2777-2796. doi: 10.3934/cpaa.2020121

[3]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020021

[4]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[5]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[6]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[7]

Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164

[8]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020328

[9]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001

[10]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020077

[11]

Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control & Related Fields, 2019  doi: 10.3934/mcrf.2020015

[12]

Jean Dolbeault, Marta García-Huidobro, Rául Manásevich. Interpolation inequalities in $ \mathrm W^{1,p}( {\mathbb S}^1) $ and carré du champ methods. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 375-394. doi: 10.3934/dcds.2020014

[13]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[14]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[15]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[16]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[17]

Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020281

[18]

Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199

[19]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[20]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]