\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • The aim of this paper is twofold. Firstly, we derive an explicit expression of the (theoretical) solutions of stochastic differential equations with affine coefficients driven by $ \alpha $-stable white noise. This is done by means of Itô formula. Secondly, we develop a detection algorithm for the first jump time in simulation of sampling trajectories which are described by the solutions. The algorithm is carried out through a multivariate Lagrange interpolation approach. To this end, we utilise a computer simulation algorithm in MATLAB to visualise the sampling trajectories of the jump-diffusions for two combinations of parameters arising in the modelling structure of stochastic differential equations with affine coefficients.

    Mathematics Subject Classification: 65C99, 68U20, 60E07, 60G17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $ \alpha_1<1 $ and $ \alpha_2>1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10

    Figure 2.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \lambda $ changes when $ \alpha_1 $ = 0.5 and $ \alpha_2 $ = 1.5

    Figure 3.  $ \alpha_1<1 $ and $ \alpha_2>1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 0.25 and $ \alpha_2 $ = 1.75

    Figure 4.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 1 and $ \mu_2 $ = 10

    Figure 5.  $ \alpha_1>1 $ and $ \alpha_2<1 $: Fix $ \lambda $ = 1, $ \mu_1 $ = 10 and $ \mu_2 $ = 1

    Figure 6.  $ \alpha_1>1 $ and $ \alpha_2<1 $: $ \mu_2 $ changes when $ \alpha_1 $ = 1.5 and $ \alpha_2 $ = 0.5

    Table 1.  Data processed for sample trajectories when $ \alpha_1<1 $ and $ \alpha_2>1 $

    $ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
    10 1 100 0.5 1.5 0.08203 -63.86
    1 0.25 100 0.75 1.25 0.1855 -303.2
    1 100 1 0.75 1.75 0.1035 122.5
    1 100 0.25 0.75 1.5 0.207 -896.1
    10 100 0.25 0.5 1.25 0.3301 252.1
    100 100 1 0.25 1.75 0.1934 -3028000
    10 1 0.25 0.25 1.25 0.5762 533.7
     | Show Table
    DownLoad: CSV

    Table 2.  Data processed for sample trajectories when $ \alpha_1>1 $ and $ \alpha_2<1 $

    $ \lambda $ $ \mu_1 $ $ \mu_2 $ $ \alpha_1 $ $ \alpha_2 $ t $ X^\alpha_t $
    10 0.25 1 1.5 0.5 0.1973 -91.87
    10 1 100 1.5 0.25 0.01953 95.72
    1 100 1 1.25 0.5 0.04492 305.9
    100 1 0.25 1.5 0.25 0.1211 346
    1 1 100 1.75 0.5 0.09766 311.1
    100 1 100 1.5 0.5 0.05273 -242.9
    10 1 0.25 1.75 0.75 0.5742 -105.1
     | Show Table
    DownLoad: CSV
  • [1] D. ApplebaumL$\acute{e}$vy Processes and Stochastic Calculus, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511755323.
    [2] C. BardgettE. Gourier and M. Leippold, Inferring volatility dynamics and risk premia from the S & P 500 and VIX markets, J. Financ. Econ., 131 (2019), 593-618. 
    [3] A. BarlettaP. Magistris and D. Sloth, It only takes a few moments to hedge options, J. Econ. Dyn. Control, 100 (2019), 251-269.  doi: 10.1016/j.jedc.2018.11.008.
    [4] O. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Statist., 24 (1997), 1-13.  doi: 10.1111/1467-9469.00045.
    [5] J. CampbellS. GiglioC. Polk and R. Turley, An intertemporal CAPM with stochastic volatility, J. Financ. Econ., 128 (2018), 207-233. 
    [6] J. Y. CampbellA. W. C. Lo and  A. C. MacKinlayThe Econometrics of Financial Markets, Princeton University Press, 1997. 
    [7] J. C. CoxJ. E. Ingersoll and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.
    [8] M. Dror, P. L$\prime$ecuyer and F. Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer Science & Business Media, 2002.
    [9] H. DuJ. Wu and W. Yang, On the mechanism of CDOs behind the current financial crisis and mathematical modeling with L$\acute{e}$vy distributions, Intel. Inform. Manag., 2 (2010), 149-158. 
    [10] D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.
    [11] D. DuffieJ. Pan and K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica, 68 (2000), 1343-1376.  doi: 10.1111/1468-0262.00164.
    [12] A. FicheJ. C. CexusA. Martin and A. Khenchaf, Features modeling with an $\alpha$-stable distribution: Application to pattern recognition based on continuous belief functions, Inform. Fusion, 14 (2013), 504-520. 
    [13] R. GiacomettiM. BertocchiS. T. Rachev and F. J. Fabozzi, Stable distributions in the Black-Litterman approach to asset allocation, Quant. Finance, 7 (2007), 423-433.  doi: 10.1080/14697680701442731.
    [14] M. HainM. Uhrig-Homburg and N. Unger, Risk factors and their associated risk premia: An empirical analysis of the crude oil market, J. Bank. Finance, 95 (2018), 44-63. 
    [15] A. Janicki and  A. WeronSimulation and Chaotic Behavior of $\alpha$-Stable Stochastic Processes, CRC Press, 1993. 
    [16] S. Janson, Stable Distributions, preprint, 2011. Available from: http://www2.math.uu.se/ svante/papers/sjN12.pdf.
    [17] R. Jarrow, Exploring mispricing in the term structure of CDS spreads, Rev. Finance, 23 (2018), 161-198. 
    [18] W. E. LelandM. S. TaqquW. Willinger and D. W. Wilson, On the self-similar nature of Ethernet traffic, ACM SIGCOMM Comput. Commun. Rev., 23 (1993), 183-193. 
    [19] P. Lévy, Calcul des probabilités, Gauther-Villars, 1925.
    [20] P.Lévy, Théorie de l'addition des variables aléatoires, Gauther-Villars, 1937.
    [21] B. Mandelbrot, The Pareto-L$\acute{e}$vy Law and the Distribution of Income, Int. Econ. Rev., 1 (1960), 79-106. 
    [22] G. Samorodnitsky and  M. S. TaqquStable Random Processes: Stochastic Models with Infinite Variance, CRC Press, 1994. 
    [23] M.F.Shlesinger, G.M.Zaslavsky and U.Frisch, L$\acute{e}$vy flights and related topics in physics, in Lecture notes in physics, vol. 450, (1995), Springer-Verlag. doi: 10.1007/3-540-59222-9.
    [24] J. Song and J. Wu, A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven by $\alpha$-stable white noise, Commun. Statist. Theory Meth., 48 (2019), 4888-4902.  doi: 10.1080/03610926.2018.1500602.
    [25] O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 52 (1977), 177-188. 
    [26] J. Wu and W. Yang, Valuation of synthetic CDOs with affine jump-diffusion processes involving Lévy stable distributions, Math. Comput. Model., 57 (2013), 570-583.  doi: 10.1016/j.mcm.2012.06.038.
    [27] V. M. Zolotarev, One-dimensional Stable Distributions, American Mathematical Society, 1986.
    [28] C. Zopounidis and P. M. Pardalos, Managing in Uncertainty: Theory and Practice, Springer Science & Business Media, 2013.
  • 加载中

Figures(6)

Tables(2)

SHARE

Article Metrics

HTML views(1647) PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return